• 제목/요약/키워드: li-polymer battery

검색결과 155건 처리시간 0.024초

Effect of Calcination Temperature of Size Controlled Microstructure of LiNi0.8Co0.15Al0.05O2 Cathode for Rechargeable Lithium Battery

  • Park, Tae-Jun;Lim, Jung-Bin;Son, Jong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.357-364
    • /
    • 2014
  • Size controlled, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathode powders were prepared by co-precipitation method followed by heat treatment at temperatures between 750 and $850^{\circ}C$. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance. The synthesized $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ has a good electrochemical performance with an initial discharge capacity of $190mAhg^{-1}$ and good capacity retention of 100% after 30 cycles at 0.1C ($17mAg^{-1}$). The capacity retention of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ is better than that at 800 and $850^{\circ}C$ without capacity loss at various high C rates. This is ascribed to the minimized cation disorder, a higher conductivity, and higher lithium ion diffusion coefficient ($D_{Li}$) observed in this material. In the differential scanning calorimetry DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by calcined at high temperature, and this decrease is especially at $850^{\circ}C$. This behavior implies that the high temperature calcinations of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ prevent phase transitions with the release of oxygen.

리튬이차전지용 고분전해질의 무기물의 첨가에 대한 영향 (The Effect of Inorganic Material in Polymer Electrolyte for Lithium Secondary Battery)

  • 박수길;박종은;이홍기;이주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.822-824
    • /
    • 1998
  • The lithium polymer battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key point of the secondary battery system. The new type of polymer electrolyte was prepared under a dry Ar atmosphere by dissolving $LiCIO_4$ in a matrix of EC, PC and then dispersing polyacrylonitrile(PAN). Also adding some inorganic filler $Al_2O_3$. The dispersed solution heated at $120^{\circ}C$. The polymer electrolyte were characterized by EIS(Electrochemical Impedance Spectroscopy), TGA(Thermo Gravimetric analysis), DMA(Dynamic Mechanical Analyzer), DSC (Differential Scanning Calorimetry). The lithium ion yield is 0.29 when PAN-$Al_2O_3$ which was applied DC 5mV. The ionic conductivity of PAN, PAN-$Al_2O_3$ polymer electrolytes were showed $1.0{\times}10^{-4}S/cm$, $8.4{\times}10^{-4}S/cm$ at room temperature. When inorganic filler was added in the polymer electrolyte, ionic conductivity and lithium yield more larger than without inorganic filler.

  • PDF

이온전도성 poly(ethylene oxide)고분자전해질의 전도특성 (Conductivity properties of ion conducting polymer electrolyte based on poly(ethylene oxide))

  • 김종욱;문성인;진봉수;구할본;윤문수
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권4호
    • /
    • pp.487-494
    • /
    • 1995
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. We investigated the effects of lithium salts, plasticizer addition, temperature dependence of conductivity and electrochemical stability window of polyethylene oxide(PEO) electrolytes. PEO electrolyte completed with LiCIO$\_$4/ shows the better conductivity than the others. PEO-LiCIO$\_$4/ electrolyte, when EO/Li$\^$+/ ratio is 8, showed adequate conductivity around room temperature. By adding propylene carbonate and ethylene carbonate to PEO-LiCIO$\_$4/ electrolyte, its conductivity was higher than that of PEO-LiCIO$\_$4/ without those. Also PEO$\_$8/LiCIO$\_$4/ electrolyte remains stable up to 4.5V vs. Li/Li.

  • PDF

Synthesis and Characteristics of Acrylol Borate as New Acrylic Gelator for Lithium Secondary Battery

  • Shin, Hyun-Min;Nguyen, Congtranh;Kim, Byeong-Yeol;Han, Myong-Hee;Kim, Ju-Sung;Kim, Jin-Hwan
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.134-138
    • /
    • 2008
  • A novel acrylol borate was designed and synthesized by reacting acrylate monomer and boric acid. The obtained acrylol borate was used as both gelator and anion receptor for the liquid electrolyte in a lithium secondary battery. It was found that the ionic conductivity of the gel polymer electrolyte (GPE) was as high as that of the liquid electrolyte, and the thermal stability of GPE was increased when only 2 wt% acrylol borate was incorporated into the liquid electrolyte. These results suggest that acrylol borate can be used as an effective additive to enhance the thermal stability of the electrolyte without adversely affecting its conductivity. It is believed that the strong complex formation between boron in the gelator and the anion of the salt is responsible for the enhanced thermal stability of the electrolyte solution and the increased ionic conductivity.

Electrochemical Properties of Cross-linked Polyurethane Acrylate-Based Gel Polymer Electrolyte

  • Kim, Hyun-Soo;Kim, Sung-Il;Choi, Gwan-Young;Moon, Seong-In;Kim, Sang-Pil
    • 전기화학회지
    • /
    • 제5권4호
    • /
    • pp.197-201
    • /
    • 2002
  • In this study, a gel polymer electrolyte was prepared from urethane acrylate and its electrochemical performances were evaluated. And, $LiCoO_2/GPE/graphite$ cells were prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor containing $5 vol\%$ curable mixture had a low viscosity relatively. Ionic conductivity of the gel polymer electrolyte at room temperature and $-20^{\circ}C$ was ca. $5.9\times10^{-3}S{\cdot}cm^{-1}\;and\;1.7\times10^{-3}S{\cdot}cm^{-1}$, respectively. GPE showed electrochemical stability up to potential of 4.5V vs. $Li/Li^+.LiCoO_2/GPE/graphite$ cell showed a good high-rate and a low-temperature performance.

PVDF계 고분자 전해질의 혼합비에 따른 이온 전도 특성 (Ion Conduction Properties of PVDF based Polymer Electrolyte as a function of a Mixed Ratio)

  • 김종욱;송희웅;구할본;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.121-124
    • /
    • 1998
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. This paper describes temperature dependence of conductivity, impedance spectroscopy, electrochemical properties of PVDF electrolytes as a function of a mixed ratio. Polyvinylidene(PVDF) based polymer electrolyte films were prepared by thermal gellification method of preweighed PVDF, plasticizer and Li salt. The conductivity of PVDF electrolytes was 10$\^$-3/S/cm. 25PVDFPC$\_$10/EC$\_$10/LiClO$_4$ electrolyte shows the better conductivity of the others. 25PVDFPC$\_$10/EC$\_$10/LiClO$_4$electrolyte remains stable up to 4.7V vs. Li/Li$\^$+/. Steady state current method and ac impedance used for the determination of transference numbers in PVDFD electrolyte film. The transference number of 25PVDFPC$\_$10/EC$\_$10/LiClO$_4$electrolyte is 0.58.

  • PDF

Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구 (A Study on the Impedance Characteristics and Mechanisms of Li Intecalation on the Tin Oxide-flyash Composite Electrodes)

  • 구할본;김종욱
    • 한국전기전자재료학회논문지
    • /
    • 제17권11호
    • /
    • pp.1224-1229
    • /
    • 2004
  • The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.