• Title/Summary/Keyword: li-ion polymer battery

Search Result 79, Processing Time 0.018 seconds

A Study on the Impedance Characteristics and Mechanisms of Li Intecalation on the Tin Oxide-flyash Composite Electrodes (Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Jong-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1224-1229
    • /
    • 2004
  • The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.

The Polyaniline Electrode Doped with Li Salt and Protonic Acid in Lithium Secondary Battery

  • Ryu, Kwang-Sun;Kim, Kwang-Man;Hong, Young-Sik;Park, Yong-Joon;Jang, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1144-1148
    • /
    • 2002
  • We prepared the polyaniline (Pani) film and powder by chemical polymerization and doping with different dopants and also investigated the capability of Li//polyaniline cells after assembling. The oxidation/reduction potentials and electrochemical reaction of Li//polyaniline cells were tested by cyclic voltammetry technique. The Li//Pani-HCl cells with 10% and 20% conductors show a little larger specific discharge capacities than that without conductor. The highest discharge capacity of almost 50 mAh/g at 100th cycle is also achieved. However, Li//Pani-LiPF6 with 20% conductor shows a remarkable performance of ~90 mAh/g at 100th cycle. This is feasible value for using as the positive electrode material of lithium ion secondary batteries. It is also proved that the powder type electrode of Pani is better to use than the film type one to improve the specific discharge capacity and its stability with cycle.

Ion Conduction Properties of PVDF/PAN based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PVDF/PAN계 고분자 전해질의 이온 전도 특성)

  • 이재안;김종욱;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.306-311
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity impedance spectroscopy and electrochemical properties of PDF/PAN electrolytes as a function of a mixed ratio were reported for PVDF/PAN based polymer electrolyte films which were prepared by thermal gellification method of preweighed PVDF/PAN plasticizer and Li salt. The conductivity of PVDF/PAN electrolytes was 10$\^$-3/S/cm. 20PVDF5PEN LiCiO$\_$4//PC$\_$10//EC$\_$10/ electrolyte has the better conductivity compared to others. 20PVDF5PANLICIO$\_$4//PC$\_$10//EC$\_$10/ electroylte remains stable up to 5V vs. Li/Li$\^$+/. Steady state current method and ac impedance were used for the determination of transference numbers in PVDF/PAN electrolyte film. The transference number of 20PVDF5PANLiCO$\^$4//PC$\_$10//EC$\_$10/ electrolyte is 0.48.

  • PDF

The Effect of Polymer Blending and Extension Conditions on the Properties of Separator Prepared by Wet Process for Li-ion Secondary Battery (고분자 블렌딩 및 연신조건이 리튬 이온전지용 습식 Separator의 물성에 미치는 영향)

  • 문성인;손영수;김순식;김진열
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • The separator made from the blends of high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) was prepared by wet processing to use as Li-ion secondary battery. We investigated effects of the blending of the polymers and the film extension on the mechanical properties of the separator. The mechanical strength of separator increased with increasing molecular weights and contents of UHMWPE, for instance about $1000 kg/\textrm{cm}^2$ with the five times extended film of 6 wt% UHMWPE. The pores of the separator were very uniform with the size of 0.1~$0.12\mu\textrm{m}$. The shut-down characteristic quickly increased at around $130^{\circ}C$ and the fusion temperature was $160^{\circ}C$, so it could be applied to the lithium ion secondary battery.

The characteristics of polymer electrolyte for lithium polymer battery

  • Park Soo-Gil;Park Jong-Eun;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 1999
  • A lithium ion battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key factor of the secondary battery system, that has been obtained during the process of the development of a polymer type lithium battery. As a successful result of the solid polymer electrolyte. The ionic conductivity of the solid polymer electrolyte, which is composed of polyacrylonitrile and $LiClO_4\;with\; Al_2O_3$ dissolved as the supporting electrolyte, has been confirmed to be $2.3\times10^{-4} S/cm$ at room temperature.

Recent Trend of Lithium Secondary Batteries for Cellular Phones (최근 휴대폰용 배터리의 기술개발 동향)

  • Lee, H.G.;Kim, Y.J.;Cho, W.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In this review article, we are going to explain the recent development of lithium secondary batteries for a cellular phone. There are three kinds of rechargeable batteries for cellular phones such as nickel-cadmium, nickel-metal hydride, and lithium ion or lithium ion polymer. The lithium secondary battery is one of the most excellent battery in the point of view of energy density. It means very small and light one among same capacity batteries is the lithium secondary battery. The market volume of lithium secondary batteries increases steeply about 15% annually. The trend of R&D is focused on novel cathode materials including $LiFePO_4$, novel anode materials such as lithium titanate, silicon, and tin, elecrolytes, and safety insurance.