Existence of leverage points was claimed to be the reason for the WLAV estimator failing to reject bad data in the measurements. This paper presents an impact of leverage points on the result of power system state estimation. State estimator is run with measurement sets with gross error and leverage point. Three test cases are performed and the results are presented using IEEE 30 bus system.
This paper deals with a robust regression estimator. We propose an efficient one-step GM-estimator, which has a bounded influence function and a high breakdown point. The main idea of this paper is to use the Mallows-type weights which depend on both the predictor variables and the residuals from a high breakdown initial estimator. The proposed weighting scheme severely downweights the bad leverage points and slightly downweights the good leverage points. Under some regularity conditions, we compute the finite-sample breakdown point and prove the asymptotic normality. Some simulation results and a numerical example are also presented.
Communications for Statistical Applications and Methods
/
v.17
no.4
/
pp.541-550
/
2010
The $L_1$-regression estimator is susceptible to the leverage points, even though it is highly robust to the vertical outliers. This article is concerned with the improvement of robustness of the $L_1$-estimator. To improve its robustness, in terms of the breakdown point, we attempt to dampen the influence of the leverage points by means of reducing the weights corresponding to the leverage points. In addition the algorithm employs the linear scaling transformation technique, for higher computational efficiency with the large data sets, to solve the linear programming problem of $L_1$-estimation. Monte Carlo simulation results indicate that the proposed algorithm yields $L_1$-estimates which are robust to the leverage points as well as the vertical outliers.
In this paper, we discuss and review various measures which have been presented for studying outliers. high-leverage points, and influential observations when principal component regression is adopted. We suggest several diagnostics measures when principal component regression is used. A numerical example is illustrated. Some individual data points may be flagged as outliers, high-leverage point, or influential points.
Communications for Statistical Applications and Methods
/
v.1
no.1
/
pp.27-32
/
1994
We propose a robust regression estimator which has both a high breakdown point and a bounded influence function. The main contribution of this article is to present a weight function in the generalized M (GM)-estimator. The weighting schemes which control leverage points only without considering residuals cannot be efficient, since control leverage points only without considering residuals cannot be efficient, since these schemes inevitably downweight some good leverage points. In this paper we propose a weight function which depends both on design points and residuals, so as not to downweight good leverage points. Some motivating illustrations are also given.
Communications for Statistical Applications and Methods
/
v.7
no.3
/
pp.667-676
/
2000
This paper focuses on the problem of detecting multiple leverage points and outliers in multivariate linear models. It is well known that he identification of these points is affected by masking and swamping effects. To identify them, Rousseeuw(1985) used robust estimators of MVE(Minimum Volume Ellipsoids), which have the breakdown point of 50% approximately. And Rousseeuw and van Zomeren(1990) suggested the robust distance based on MVE, however, of which the computation is extremely difficult when the number of observations n is large. In this study, e propose a new algorithm to reduce the computational difficulty of MVE. The proposed method is powerful in identifying multiple leverage points and outlies and also effective in reducing the computational difficulty of MVE.
Cloud computing has increasingly been drawing attention these days. Each big company in IT hurries to get a chunk of meat that promises to be a whopping market in the future. At the same time, information is always associated with security and risk problems. Nowadays, the handling of these risks is no longer just a technology problem, with a good deal of literature focusing on risk or security management and framework in the information system. In this paper, we find the specific business meaning of the BMIS model and try to apply and leverage this model to cloud risk. Through a previous study, we select and determine the causal risk factors in cloud service, which are also known as CSFs (Critical Success Factors) in information management. Subsequently, we distribute all selected CSFs into the BMIS model by mapping with ten principles in cloud risk. Finally, by using the leverage points, we try to leverage the model factors and aim to make a resource-optimized, dynamic, general risk control business model for cloud service providers.
In this paper we propose an efficient scoring type one-step GM-estimator, which has a bounded influence function and a high break-down point. The main point of the estimator is in the weighting scheme of the GM-estimator. The weight function we used depends on both leverage points and residuals So we construct an estimator which does not downweight good leverage points Unider some regularity conditions, we compute the finite-sample breakdown point and prove asymptotic normality Some simulation results are also presented.
The Journal of Asian Finance, Economics and Business
/
v.7
no.12
/
pp.627-633
/
2020
The study attempts to analyze the impact of firm's risk on capital structure in the context of seasonal and non-seasonal businesses. We use two independent variables namely credit risk and systematic risk and one dependent variable to explore this connection. Sugar sector is taken as seasonal while the textile sector as non-seasonal businesses. The panel data of twenty-five firms from each sector are taken ranging for the period of 2012 to 2019 which has been retrieved from their annual reports for empirical analysis of the study. The results reveal the negative impact of credit risk on capital structure in both types of businesses. Increasing (decreasing) one point of credit risk causes a decrease (increase) leverage ratio by 0.27 points for seasonal while increasing (decreasing) one point of credit risk causes to decrease (increase) leverage by 0.15 points for non-seasonal businesses. Furthermore, the study shows positive impact of systematic risk on leverage ratio in non-seasonal business and no impact in seasonal business. Any increase (decrease) in the systematic risk causes an incline (decline) leverage ratio by 2.68 units for non-seasonal businesses. The study provides a guideline to managers for risk management in businesses. The research focusses on theoretical as well as managerial and policy implications on risk management in businesses.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2012.10a
/
pp.160-161
/
2012
The traditional theory regarding the pivot point of a ship during maneuvering, so called apparent pivot point, is located nearly at 1/3 ship's length from the bow when the ship is moving ahead, and between 1/4 ship's length from the stern and the rudder post when going astern. The pivot point is sometimes considered to be the centre of leverage for forces acting on the ship. However, the pivot point is located out of ship due to strong lateral force, such as current and it is very inconvenient to use during maneuvering a ship. In this paper firstly, pivot points due to ship's condition are investigated carefully. And then the center of lateral resistance used at the present are determined. While a new lateral force is added, we can compare the pivot point with the center of lateral forces. Finally, we will suggest the center of all lateral forces for maneuvering instead of pivot point. Especially, it will be very helpful for pilots to handle ships in simulation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.