• Title/Summary/Keyword: level radius

Search Result 241, Processing Time 0.022 seconds

An automatic rotating annular flume for cohesive sediment erosion experiments: Calibration and preliminary results

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.319-319
    • /
    • 2023
  • Flows of water in the environment (e.g. in a river or estuary) generally occur in complex conditions. This complexity can hinder a general understanding of flows and their related sedimentary processes, such as erosion and deposition. To gain insight in simplified, controlled conditions, hydraulic flumes are a popular type of laboratory research equipment. Linear flumes use pumps to recirculation water. This isn't appropriate for the investigation of cohesive sediments as pumps can break fragile cohesive sediment flocs. To overcome this limitation, the rotating annular flume (RAF) was developed. While not having pumps, a side-effect is that unwanted secondary circulations can occur. To counteract this, the top and bottom lid rotate in opposite directions. Furthermore, a larger flume is considered better as it has less curvature and secondary circulation. While only a few RAFs exist, they are important for theoretical research which often underlies numerical models. Many of the first-generation of RAFs have come into disrepair. As new measurement techniques and models become available, there is still a need to research cohesive sediment erosion and deposition in facilities such as a RAF. New RAFs also can have the advantage of being automatic instead of manually operated, thus improving data quality. To further advance our understanding of cohesive sediment erosion and deposition processes, a large, automatic RAF (1.72 m radius, 0.495 m channel depth, 0.275 m channel width) has been constructed at the Hydraulic Laboratory at Chungnam National University (CNU), Korea. The RAF has the ability to simulate both unidirectional (river) and bidirectional (tide) flows with supporting instrumentation for measuring turbulence, bed shear stress, suspended sediment concentraiton, floc size, bed level, and bed density. Here we present the current status and future prospect of the CNU RAF. In the future, calibration of the rotation rate with bed shear stress and experiments with unidirectional and bidirectional flow using cohesive kaolinite are expected. Preliminary results indicate that the CNU RAF is a valuable tool for fundamental cohesive sediment transport research.

  • PDF

Comparative analysis of torsional and cyclic fatigue resistance of ProGlider, WaveOne Gold Glider, and TruNatomy Glider in simulated curved canal

  • Pedro de Souza Dias;Augusto Shoji Kato;Carlos Eduardo da Silveira Bueno;Rodrigo Ricci Vivan;Marco Antonio Hungaro Duarte ;Pedro Henrique Souza Calefi ;Rina Andrea Pelegrine
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.4.1-4.10
    • /
    • 2023
  • Objectives: This study aimed to compare the torsional and cyclic fatigue resistance of ProGlider (PG), WaveOne Gold Glider (WGG), and TruNatomy Glider (TNG). Materials and Methods: A total of 15 instruments of each glide path system (n = 15) were used for each test. A custom-made device simulating an angle of 90° and a radius of 5 millimeters was used to assess cyclic fatigue resistance, with calculation of number of cycles to failure. Torsional fatigue resistance was assessed by maximum torque and angle of rotation. Fractured instruments were examined by scanning electron microscopy (SEM). Data were analyzed with Shapiro-Wilk and Kruskal-Wallis tests, and the significance level was set at 5%. Results: The WGG group showed greater cyclic fatigue resistance than the PG and TNG groups (p < 0.05). In the torsional fatigue test, the TNG group showed a higher angle of rotation, followed by the PG and WGG groups (p < 0.05). The TNG group was superior to the PG group in torsional resistance (p < 0.05). SEM analysis revealed ductile morphology, typical of the 2 fracture modes: cyclic fatigue and torsional fatigue. Conclusions: Reciprocating WGG instruments showed greater cyclic fatigue resistance, while TNG instruments were better in torsional fatigue resistance. The significance of these findings lies in the identification of the instruments' clinical applicability to guide the choice of the most appropriate instrument and enable the clinician to provide a more predictable glide path preparation.

Field investigation and numerical study of ground movement due to pipe pile wall installation in reclaimed land

  • Hu Lu;Rui-Wang Yu;Chao Shi;Wei-Wei Pei
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.397-408
    • /
    • 2023
  • Pipe pile walls are commonly used as retaining structures for excavation projects, particularly in densely populated coastal cities such as Hong Kong. Pipe pile walls are preferred in reclaimed land due to their cost-effectiveness and convenience for installation. However, the pre-bored piling techniques used to install pipe piles can cause significant ground disturbance, posing risks to nearby sensitive structures. This study reports a well-documented case history in a reclamation site, and it was found that pipe piling could induce ground settlement of up to 100 mm. Statutory design submissions in Hong Kong typically specify a ground settlement alarm level of 10 mm, which is significantly lower than the actual settlement observed in this study. In addition, lateral soil movement of approximately 70 mm was detected in the marine deposit. The lateral soil displacement in the marine deposit was found to be up to 3.4 and 3.1 times that of sand fill and CDG, respectively, mainly due to the relatively low stiffness of the marine deposit. Based on the monitoring data and site-investigation data, a 3D numerical analysis was established to back-analyze soil movements due to the installation of the pipe pile wall. The comparison between measured and computed results indicates that the equivalent ground loss ratio is 20%, 40%, and 20% for the fill, marine deposit and CDG, respectively. The maximum ground settlement increases with an increase in the ground loss ratio of the marine deposit, whereas the associated influence radius remains stationary at 1.2 times the pipe pile wall depth (H). The maximum ground settlement increases rapidly when the thickness of marine deposit is less than 0.32H, particularly for the ground loss ratio of larger than 40%. This study provides new insights into the pipe piling construction in reclamation sites.

Development of microsatellite markers to assess the genetic diversity of the red-tongue viper, Gloydius ussuriensis (Reptilia: Viperidae) on the Korean Peninsula

  • Jung A Kim;Mu-Yeong Lee;Hye Sook Jeon;Min Seock Do;Kyo Soung Koo;Sang-Cheol Lee;Ji-Hwa Jung;Yoon-Jee Hong;Junghwa An
    • Journal of Species Research
    • /
    • v.12 no.4
    • /
    • pp.281-285
    • /
    • 2023
  • The red-tongue viper(Gloydius ussuriensis) is one of only three species of the genus Gloydius found in South Korea. Gloydius ussuriensis has a narrow activity radius and is distributed nationwide, and this species was reported to have the largest population among the Korean species in genus Gloydius. Preliminary results of a phylogenetic analysis using part of the mitochondrial DNA indicated that domestic G. ussuriensis is not comprised of monophyletic groups, and morphological analysis showed differences between domestic populations. In this study, we developed 17 microsatellites for the analysis of G. ussuriensis genetic diversity based on these characteristics. These microsatellites were developed using six multiplex panels, which could be employed to validate 80 G. ussuriensis specimens from different geographical regions in South Korea. The average number of alleles per locus was 12.2 and ranged from 4 to 25 alleles; the observed heterozygosity ranged from 0.238 to 0.950 and the expected heterozygosity ranged from 0.213 to 0.933. As a result of assessing four inland populations, a high level of genetic diversity was confirmed. These newly developed markers will be useful for further studies on the population structure and evolutionary history of the G. ussuriensis.

Impact of Land-based Pollution Sources on Seawater and Shellfish after Rainfall Event in the Jindongman Area (강우 발생에 의한 진동만해역의 육상오염원이 해수 및 패류에 미치는 영향 분석)

  • Jang Won Lee;Minchul Yoon;Ji Hoon Kim;Sung Rae Jo;Ki Ho Nam;Kwang Soo Ha;Kunbawui Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.798-809
    • /
    • 2023
  • In this study, we evaluated the impacts of land-based pollution sources on seawater and shellfish in the Jindongman area after 20.5 mm and 90.6 mm rainfall events. We analyzed sanitary indicator microorganisms used in survey management, such as total coliform, fecal coliform, Escherichia coli, and male-specific coliphage in Waste water treatment plant (WWTP), major inland pollution source,s seawater, and shellfish for 4 days after rainfall events. Our results showed that the range of coliform group and fecal coliform was 1.8-49 and <1.8-4.5 MPN (most probable number)/100 mL, respectively, after rainfall events in WWTP discharge water. Furthermore, the radius of the calculated impacted area of major inland pollution sources ranged from 5 to 798 m after 20.5 mm of rainfall and 30 to 1,031 m after 90.6 mm of rainfall. The fecal coliform of seawater at 30 stations in the shellfish growing area and areas adjacent to four stations was <1.8-130 and from <1.8-79 MPN/100 mL, respectively. The E. coli level of shellfish at 7 stations in the shellfish growing area was <18-220 MPN/100 g.

An Efficient Routing Scheme Based on Node Density for Underwater Acoustic Sensors Networks

  • Rooh Ullah;Beenish Ayesha Akram;Amna Zafar;Atif Saeed;Sultan H. Almotiri;Mohammed A. Al Ghamdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1390-1411
    • /
    • 2024
  • Underwater Wireless Sensors Networks (UWSNs) are deployed in remotely monitored environment such as water level monitoring, ocean current identification, oil detection, habitat monitoring and numerous military applications. Providing scalable and efficient routing is very challenging in UWSNs due to the harsh underwater environment. The biggest difficulties are the nodes inherent movement due to water current, long delay in data transmission, low bandwidth of the acoustic signal, high error rate and energy scarcity in battery powered nodes. Many routing protocols have been proposed to solve the aforementioned problems. There are three broad categories of routing protocols namely depth based, energy based and vector-based routing. Vector Based Forwarding protocols perform routing through virtual pipeline by defining their radius which give proper direction to packets communication. We proposed a routing protocol termed as Path-Oriented Energy Scaled Expanded Vector Based Forwarding (PESEVBF). PESEVBF takes into account all parameters; holding time, the source nodes packets routing path and void holes creation on the second hop; PESEVBF not only considers the packet upward advancement but also focus on density of the forwarded nodes in terms of number of potential forwarding and suppressed nodes for path selection. Node selection in resultant holding time is based on minimum Path Factor (PF) value. Moreover, the suppressed node will be selected for packet forwarding to avoid the void holes occurrences on the second hop. Performance of PESEVBF is compared with other routing protocols using matrices such as energy consumption, packet delivery ratio, packets dropping ratio and duplicate packets creation indicating considerable performance improvement.

Distributional Characteristics of the Population and Assessment of the Conservation Status of Michelia Compressa on Korea (국내 초령목 개체군의 분포특성과 보전지위평가)

  • Jong-Gab Kim;Dae-Shin Kim;Su-Kyoung Kim;Hyun-Mi Jeong;Young-Ki Song;Sung-Won Son;Jung-Goon Koh
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.3
    • /
    • pp.182-191
    • /
    • 2023
  • This study was carried out to identify the distribution and growth characteristics and evaluate the conservation status of the Michelia compressa Maxim., a rare and endangered wild plant II, in the habitats in Korea. A total of 314 individuals were found in the natural habitats of Heuksan Island and Jeju Island and were divided into four populations. About 45.9% (144 individuals) were distributed in the range of 401m~500m above sea level. The average height of trees was 2.7(±4.8)m, the diameter at breast height was 12.6(±13.9)cm, and the number of branches was 1.0(±0.5) on average. 54.3% of the sapling individuals of M. compressa were distributed within a radius of 30 m from the mother tree, 25.8% were distributed between 31 m through 40 m, and most (90.1%) were distributed within a radius of 60 m. The fact that sapling individuals of M. compressa are not identified even around some mature individuals and appear only in extremely limited areas is estimated to be closely related to the growth conditions as well as the environment of the natural habitats. The dispersal of M. compressa is presumed to be related to the birds and natural seedlings because water puddles, a resting place for birds beyond the range of natural seedlings, characterize its habitats. The IUCN Red List evaluation criteria at the regional and national level of M. compressa corresponds to the Critically Endangered category, and the domestic population under the category of "CR B2ab(v); C2a(i); D."

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

A Study on the High Speed Train Localization Using Doppler Frequency in the Wireless Communication (무선통신 도플러 주파수를 이용한고속열차 위치 추정에 관한 연구)

  • Kim, Jungtai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.826-833
    • /
    • 2017
  • It is important to localize trains precisely for the purpose of controlling them and there have been many studies designed to accomplish this without the need for wayside systems. Since trains run on fixed railway lines, it is possible to search in one direction to localize them. Moreover, it is also possible to know the shape of the line in advance. In the case of high speed trains, their speed and, therefore, their Doppler frequency is relatively high and the railway line is either linear or circular with a large radius. In this study, we utilize these features and propose a train localization method using the Doppler frequency of the signals transmitted from two points (base stations). We derive localization equations for a linear line, circular line, and mixed line (linear plus circular) respectively. Though Doppler radars are usually used to measure speed, the proposed method obtains the location information and the speed successively using the ratio of the doppler frequencies of two signals without knowing the location information or the speed. Computer simulations are performed to show the variation of the estimation error according to the train's location and the measurement error level. The conditions required to obtain the target error level and the increase in the estimation error according to the measurement error are compared between the proposed and conventional methods. The results show the superior performance and robustness of the proposed method.

Analysis of Impact of Hydrologic Data on Neuro-Fuzzy Technique Result (수문자료가 Neuro-Fuzzy 기법 결과에 미치는 영향 분석)

  • Ji, Jungwon;Choi, Changwon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1413-1424
    • /
    • 2013
  • Recently, the frequency of severe storms increases in Korea. Severe storms occurring in a short time cause huge losses of both life and property. A considerable research has been performed for the flood control system development based on an accurate stream discharge prediction. A physical model is mainly used for flood forecasting and warning. Physical rainfall-runoff models used for the conventional flood forecasting process require extensive information and data, and include uncertainties which can possibly accumulate errors during modelling processes. ANFIS, a data driven model combining neural network and fuzzy technique, can decrease the amount of physical data required for the construction of a conventional physical models and easily construct and evaluate a flood forecasting model by utilizing only rainfall and water level data. A data driven model, however, has a disadvantage that it does not provide the mathematical and physical correlations between input and output data of the model. The characteristics of a data driven model according to functional options and input data such as the change of clustering radius and training data length used in the ANFIS model were analyzed in this study. In addition, the applicability of ANFIS was evaluated through comparison with the results of HEC-HMS which is widely used for rainfall-runoff model in Korea. The neuro-fuzzy technique was applied to a Cheongmicheon Basin in the South Han River using the observed precipitation and stream level data from 2007 to 2011.