Development of microsatellite markers to assess the genetic diversity of the red-tongue viper, *Gloydius ussuriensis* (Reptilia: Viperidae) on the Korean Peninsula

Jung A Kim¹, Mu-Yeong Lee², Hye Sook Jeon¹, Min Seock Do¹, Kyo Soung Koo³, Sang-Cheol Lee⁴, Ji-Hwa Jung⁵, Yoon-Jee Hong¹ and Junghwa An^{1,*}

¹National Institute of Biological Resources, Incheon 22689, Republic of Korea

²DNA Analysis Division, Seoul Institute National Forensic Service, Seoul 08036, Republic of Korea

³Research Institute of EcoScience, Ewha Womans University, Seoul 03766, Republic of Korea

⁴Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea

⁵Division of Zoology, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea

*Correspondent: safety@korea.kr

The red-tongue viper (*Gloydius ussuriensis*) is one of only three species of the genus *Gloydius* found in South Korea. *Gloydius ussuriensis* has a narrow activity radius and is distributed nationwide, and this species was reported to have the largest population among the Korean species in genus *Gloydius*. Preliminary results of a phylogenetic analysis using part of the mitochondrial DNA indicated that domestic *G. ussuriensis* is not comprised of monophyletic groups, and morphological analysis showed differences between domestic populations. In this study, we developed 17 microsatellites for the analysis of *G. ussuriensis* genetic diversity based on these characteristics. These microsatellites were developed using six multiplex panels, which could be employed to validate 80 *G. ussuriensis* specimens from different geographical regions in South Korea. The average number of alleles per locus was 12.2 and ranged from 4 to 25 alleles; the observed heterozygosity ranged from 0.238 to 0.950 and the expected heterozygosity ranged from 0.213 to 0.933. As a result of assessing four inland populations, a high level of genetic diversity was confirmed. These newly developed markers will be useful for further studies on the population structure and evolutionary history of the *G. ussuriensis*.

Keywords: *Gloydius ussuriensis*, microsatellite marker, multiplex panel, population structure, red-tongue viper

© 2023 National Institute of Biological Resources DOI:10.12651/JSR.2023.12.4.281

INTRODUCTION

The red-tongue viper (*Gloydius ussuriensis*) belonging to the family Viperidae, is a venomous snake distributed among the Russian Far East, northeastern China, and the mainland of South Korea and its associated islands (Do and Yoo, 2014; Oh and Banjade, 2021). In total, 19 known species currently belong to the genus *Gloydius*, and there are three species in South Korea, *G. brevicaudus*, *G. saxatilis*, and *G. ussuriensis* (Shim *et al.*, 1998; Xu *et al.*, 2012). *Gloydius ussuriensis* is the smallest among the three species reported in South Korea with a body length of 25–50 cm, but it forms the largest population and mainly inhabits valleys, paddy fields, and wetlands (David and Vogel, 2015; Do *et al.*, 2016). Nevertheless, the threat of population decline due to poaching is high, and the population is steadily declining, like that of other *Gloydius* species (Do *et al.*, 2016; NIBR, 2020a). Although molecular phylogenetic studies have not been carried out on species inhabiting Korea, a preliminary analysis of the phylogenetic tree using mtDNA did indicate that phylogenetic species do not form monophyletic groups, and the morphological analysis results also confirmed differences between domestic populations (NIBR, 2020b).

To date, there have been studies using *G. shedaoensis* and *Boiga irregularis* as examples of genetic diversity in snakes, using microsatellite markers, and both studies on island populations showed low genetic diversity (Wang *et al.*, 2015; Kierepka *et al.*, 2019). In China, *G. ussurien*-

sis is designated and protected as an endangered species owing to its narrow distribution range, and microsatellite markers have been reported for the investigation of genetic diversity and to characterize the genetic structure of the species (Wang *et al.*, 2014). We tested the developed 10 markers (Wang *et al.*, 2014) on Korean specimens of *G. ussuriensis*. Three out of 10 loci were successfully and clearly amplified. Regarding to subsequent population studies of Korean *Gloydius* species, we determined that more than 10 microsatellites need to be developed. In this study, we successfully mined and characterized 17 new microsatellite markers with six multiplex sets from *G. ussuriensis* genome data, and the genetic diversity of 80 individuals collected inland, in South Korea, was tested.

MATERIALS AND METHODS

Samples, DNA isolation and next-generation sequencing (NGS)

The G. ussuriensis specimens were collected from across South Korea and deposited at the National Institute of Biological Resources (NIBR: https://www.nibr.go.kr) in Incheon, South Korea. Among them, VZMLGR000 0000283, collected from Buan-gun, Jeollabuk-do (35°39' 22.4"N, 126°34'25.9"E), was used for NGS analysis. For microsatellite primer characterization and genetic diversity estimation, we used 80 samples collected from Chungchengnam-do (CN, n = 20), Gyeongsangnam-do (GN, n =20), Jeollanam-do (JN, n = 20), and Gangwon State (GW, n = 20). For each individual, scale and muscle tissue samples (approximately 0.2 cm of tail) were taken and preserved in 98% ethanol, and the sampling location, with latitude and longitude, was recorded. All sampled snakes were released immediately after sampling, and bleeding was stopped using an alcohol swab. Genomic DNA was extracted from 10-20 mg of tissue using the DNeasy Blood and Tissue kit (Qiagen, Valencia, CA, USA) according to the manufacturer's protocol. The library for NGS was constructed using the Truseq Nano DNA prep Kit (Illumina, San Diego, California, USA) and with an average insert size of 550 bp. NGS was performed on the Illumina platform, NovaSeq6000 with 150 bp paired-end reads by DNA Link Inc. (Seoul, South Korea).

Primer design, screening and touchdown PCR

The microsatellite loci were detected and primers for each single sequence repeat (SSR) sequence were designed with the program QDD version3.1.2 (Meglecz *et al.*, 2014). After securing each SSR marker from the NGS data obtained from the two samples, the loci commonly mined from the two individuals were obtained through filtering. SSRs were defined as having di-, tri-, and tetra-

nucleotide motifs with a minimum of four tandem repeats. Primers were designed according to the optimum melting temperature range of 56-61°C and a product size ranging from 150 to 300 bp. For the initial screening of polymorphisms, simplex PCR was performed using AccuPower® PCR Master Mix (Bioneer, Daejeon, South Korea) in a 20 µL reaction volume containing 10 µL $2 \times$ PCR Master Mix, 0.04 µM forward primer (tagged at the 5' end with M13 (5'-GGATAACAATTTCACACAGG-3'), Hill (5'-TGACCGGCAGCAAAATTG-3'), T3 (5'-AATTAACCC TCACTAAAGGG-3'), or neomycin (5'-AGGTGAGATG ACAGGAGATC-3'), 0.2 µM reverse primer, 0.2 µM fluorescent dye (6-FAM for M13, VIC for Hill, NED for T3 and PET for neomycin), approximately 20 ng genomic DNA, and 7 µL RNase-free water. For multiplex PCR, PCR chemistry and primer volumes were optimized for each panel using the Multiplex PCR Master Mix (Qiagen) in a 50 μ L reaction volume containing 25 μ L 2× Multiplex PCR Master Mix (including HotStarTaq Plus DNA Polymerase and Multiplex PCR Buffer with 3 mM MgCl₂), 0.05-0.4 mM primers (Table 1), approximately 20 ng genomic DNA, and 19 µL RNase-free water. The parameters for touchdown PCR were as follows: 95°C for 5 min; 10 cycles of 95°C for 1 min, 60°C to 50°C for 1 min (decreasing at a rate of 1°C per cycle), and 72°C for 1 min; 25 cycles of 95°C for 30 s, 50°C for 1 min, and 72°C for 1 min; and 72°C for 5 min.

Genotyping and data analysis

PCR products for all primer sets were multiplexed and added to a mixture of Hi-Di formamide and GeneScan-LIZ500 Size Standard (both from Applied Biosystems, Foster City, CA, USA) and run on an ABI 3730xl DNA Analyzer (Applied Biosystems). Allele sizes were verified and scored using Geneious Pro v.8.1.9 (Biomatters, Auckland, New Zealand; Kearse *et al.*, 2012). GenAlEx version 6.1 (Peakall and Smouse, 2006) was used for allele data processing, including the expected heterozygosity (H_E), observed heterozygosity (H_O), fixation index, number of alleles, and effective number of alleles. Genepop v.4.2 (Rousset, 2008) was used to calculate deviation from the Hardy-Weinberg equilibrium at each locus and linkage disequilibrium between locus pairs.

RESULTS AND DISCUSSION

Illumina sequencing yielded more than 50 Gb of data comprising 332,854,173 sequence reads from VZMLGR 0000000283 to use for sequence assembly, from which 152,868 contigs containing 6,357 microsatellite motifs were obtained. Among them, 150 primer pairs consisting of di-, tri-, and tetranucleotide motifs were selected in

Panel name	Locus	Motif	Allele range (bp)	FL	Primer sequence (5'-3')
	GU130	(AATG) ₆	169-222	PET	F: TGGTTGGGCTTTGAAGGAAGA R: AAGTGGCAGCTTGGGTTGAT
Panel A	GU137	(AGAT) ₁₂	214-358	NED	F: ACCTCAGTGATATCCCAGTGT R: GCAAATGCCTGAAATGAGCT
	GU116	(AACG)5	298-354	6FAM	F: TGAAACAGGCCAGCCATAGA R: CAAGCTGCATAACACCTGGC
	GU110	(AAAG)19	148-232	РЕТ	F: AGCACCTGCAATGATGAGAA R: GGAACAAAGCAATTCCAACCA
Panel B	GU129	(AATG)15	228-288	PET F: AGAC PET F: AGGA 6FAM F: TGAA R: CAAC PET F: AGCA CF: TGGG R: CCCT 6FAM F: AAAC R: CAAC NED F: AAAC R: TTGT PET F: TCCC R: CCCA 6FAM F: TGTG R: AACC NED F: AGAC R: AACC NED F: AGAC R: TGTC 6FAM F: TGTG R: AACC NED F: AGAC R: TGTC 6FAM F: AGCT R: GCTA PET F: ACAA R: TGTC 6FAM F: AAGC NED F: AAAC R: TGTC 6FAM F: AGCT R: GCTA PET F: ACAA R: TGTC 6FAM F: AAGC NED F: AAAC R: TGTC 6FAM F: AAGC R: TCCC	F: TGGGTTTGGCTTAACTGTGAA R: CCCTGGGTTAGAGCATAGGC
	GU001	(AC) ₈	155-181	6FAM	F: AAACACTCCATTGACTCTACAGA R: CCACTGGACTAGGAGGTGCA
Panel C	GU119	(AAGG) ₁₈	187-271	NED	F: AAAGCTTCCCACTGTCAACA R: TTGTCAGTCAGAAGCCAGGC
	GU147	(ATCC)11	260-316	РЕТ	F: TCCCTCCCTCCTACCTCAAA R: CCCACAGTTGTTGTTCAGCC
	GU150	(ATCC) ₁₃	134-200	6FAM	F: TGTGCAGACAGTTCCAGGTC R: AACCCAAATGTGCACTTGCC
	GU127	(AATC)11	212-284	NED	F: AGCTTTGCTCTCTTGGATGCT R: GCTAACATTGCCTGCAGTGC
Panel D	GU078	(AGC)5	301-313	PET	F: AAACACACAACCTGCAACCC R: TGTCATACCTCAGTGCTTGGA
	GU126	(AATC) ₈	298-342	354 6FAM 232 PET 288 VIC 181 6FAM 271 NED 316 PET 200 6FAM 284 NED 313 PET 342 6FAM 254 PET 244 NED 204 PET 286 NED 330 6FAM	F: AAGGACTCCGCTTGGAAAGG R: TTCCCACAGTGTCAGCCATC
	GU115	(AAAT)19	134-254	РЕТ	F: ACAATGGGACTGGCCTATGC R: AGATTGCTAGATGTAAATGGAAGGT
Panel E	GU072	(ACC) ₈	226-244	NED	F: TACTGGATTCAGACGCGAGC R: GAGGGCAGACTGAAGACTGG
Panel F	GU105	(AAAC) ₆	184-204	РЕТ	F: AGATTGAGCTGGCCCTCATG R: GAGCTGATAGATGTGTGGCTGA
	GU122	(AAGG)15	194-286	NED	F: AATTGGCTTCCCTACTGGCG R: GGCCAGCATTATTCAAGGGC
	GU133	(AATG) ₁₃	286-330	6FAM	F: TGTGTGAATGCTCGGTCCTC R: GGCAATCTCATCGGGACCAA

Table 1. Primer sequences for the 17 Gloydius ussuriensis microsatellite loci and optimized six multiplex panels.

FL, fluorescent label

simple PCR using samples from three G. ussuriensis specimens. We selected 17 novel microsatellites that were ultimately used to generate six multiplex panels (Table 1).

The six multiplex panels confirmed to be capable of identifying 2–4 markers per panel were used.

All 17 markers were in agreement with Hardy-Weinberg

Locus	Α	$A_{ m R}$	Ho	H_E	P value	F	GenBank
GU001	12	1.628	0.650	0.662	0.121	0.018	MZ935648
GU072	5	0.362	0.725	0.664	0.843	-0.092	MZ935651
GU078	4	0.189	0.463	0.460	0.757	-0.006	MZ935652
GU105	4	0.437	0.238	0.213	1.000	-0.114	MZ935654
GU110	15	1.214	0.875	0.892	0.813	0.019	MZ935655
GU115	25	2.711	0.950	0.933	0.297	-0.018	MZ935656
GU116	8	0.848	0.513	0.528	0.757	0.029	MZ935657
GU119	18	1.676	0.888	0.924	0.172	0.039	MZ935658
GU122	16	1.765	0.763	0.888	0.162	0.141	MZ935659
GU126	8	0.164	0.825	0.850	0.229	0.029	MZ935660
GU127	15	1.478	0.738	0.857	0.083	0.139	MZ935661
GU129	13	1.143	0.763	0.861	0.132	0.114	MZ935662
GU130	12	0.930	0.813	0.878	0.581	0.074	MZ935663
GU133	11	0.867	0.788	0.844	0.089	0.066	MZ935664
GU137	16	1.660	0.850	0.881	0.697	0.035	MZ935665
GU147	10	0.550	0.788	0.849	0.714	0.072	MZ935666
GU150	15	1.372	0.838	0.894	0.362	0.064	MZ935667

Table 2. Characterization and accession numbers of the microsatellite markers for *Gloydius ussuriensis*.

A, total number of alleles; A_R , allelic richness; H_O , observed heterozygosity; H_E , expected heterozygosity; P value, probability values of test for Hard-Weinberg equilibrium; F, fixation index; GenBank, NCBI GenBank accession number.

equilibrium even without a significance level correction for multiple comparisons (after Bonferroni correction, P = 0.05/17 = 0.0029; Table 2) and all analyzed polymorphic loci have shown no evidence of linkage disequilibrium. The polymorphisms of the markers comprised 4–25 alleles per locus. The H_0 and H_E ranged from 0.238 to 0.950 (average 0.733) and from 0.213 to 0.933 (average 0.769), respectively (Table 2).

The four populations (n = 80) from inland South Korea had similar levels of genetic variation, for which the H_O and H_E ranged from 0.715 to 0.750 and from 0.726 to 0.769, respectively (Table 3). The average number of alleles ranged from 8.647 to 9.235, and the fixation index ranged from -0.004 to 0.026 (Table 3). When looking at the results of previous studies, the genetic diversity of snakes was confirmed in two studies limited to the island, which reported average H_O and H_E values of 0.32 and 0.37 in *G. shedaoensis* (Wang *et al.*, 2015) and 0.570 and 0.677 in *B. irregularis*, respectively (Kierepka *et al.*, 2019). Therefore, compared to other snakes (*G. shedaoensis* and *B. irregularis*), the genetic diversity of South Korean *G. ussuriensis* was relatively high.

Here, we report the successful application of six multiplex panels for 17 newly developed microsatellite markers. These microsatellite markers will contribute to confirming the genetic diversity of the domestic *G. ussuriensis* population and could be used to determine whether populations in geographically isolated areas form different genetic structures. Moreover, the ability to genotype var-

 Table 3. Genetic diversity estimates of four populations on the Korean Peninsula.

Population	Ν	N_A	$N_{\rm E}$	H_O	H_E	F
CN	20	9.059	6.046	0.750	0.761	0.007
GN	20	9.235	6.041	0.726	0.744	0.026
JN	20	9.176	6.354	0.741	0.769	0.022
GW	20	8.647	5.444	0.715	0.726	-0.004
Mean	20	9.029	5.971	0.733	0.750	0.013

N, number of samples; N_A, number of alleles; N_E, number of effective alleles; H_O , observed heterozygosity; H_E , expected heterozygosity; F, fixation index; CN, Chungcheongnam-do; GN, Gyeongsangnam-do; JN, Jeollanam-do; GW, Gangwon State

ious domestic and foreign populations of G. ussuriensis will also be useful for future studies on origins and evolutionary history.

ACKNOWLEDGEMENTS

Genetic samples for this study were collected under legal permits obtained from the Ministry of Environment, Republic of Korea. Sample collection was approved by the institutional animal care and use committee (approval number: NIBR IACUC 20220001). This work was supported by grants from the National Institute of Biological Resources (NIBR202104102).

REFERENCES

- David, P. and G. Vogel. 2015. An updated list of Asian pitvipers and a selection of recent publications, in Asian pit vipers, Frankfurt am Main, Germany, Edition Chimaira, pp. 545-565.
- Do, M.S. and J.C. Yoo. 2014. Distribution pattern according to altitude and habitat type of the Red-tongue viper snake (*Gloydius ussuriensis*) in the Cheon-ma mountain. Journal of Wetlands Research 16:193-204.
- Do, M.S., J.W. Lee, H.J. Jang, D.I. Kim and J.C. Yoo. 2016. Interspecific competition and spatial ecology of three species of vipers in Korea: An application of ecological nichebased models and GIS. Korean Journal of Environment and Ecology 30:173-184.
- Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Boxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes and A. Drummond. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649.
- Kierepka, E.M., R. Juarez, K. Turner, J. Smith, M. Hamilton, P. Lyons, M.A. Hall, J.C. Beasley and O.E.J. Rhodes. 2019. Population genetics of invasive brown tree snakes (*Boiga irregularis*) on Guam, USA. Herpetologica 75:208-217.
- Meglecz, E., N. Pech, A. Gilles, V. Dubut, P. Hingamp, A. Trilles, R. Grenier and J.F. Martin. 2014. QDD version 3.1: A userfriendly computer program for microsatellite selection and primer design revisited: Experimental validation of variables determining genotyping success rate. Molecular Ecology Resources 14:1302-1313.
- NIBR. 2020a. Red data book of Republic of Korea (Amphibians and Reptiles). National Institute of Biological Resources, Incheon. pp. 110-117.
- NIBR. 2020b. Genetic diversity of animal resources IV_3.

National Institute of Biological Resources, Incheon. pp. 47-72.

- Oh, H. and M. Banjade. 2021. Ecology of red-tongue viper (*Gloydius ussuriensis*) in Jeju Island, South Korea. In: Shah, M.M., T.R. Sharif, T.R. Buhari and T.S. Imam (eds.), Snake Venom and Ecology, IntechOpen.
- Peakall, R. and P.E. Smouse. 2006. GenAlex 6: genetic analysis in excel. Population genetic of software for teaching and research. Molecular Ecology Notes 6:288-295.
- Rousset, F. 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8:103-106.
- Shim, J.H., Y.J. Son, S.S. Lee, K.S. Pack, H.B. Oh and Y.D. Pack. 1998. Ecology study on poisonous snake and investigation of the venom characteristics, snake biting frequency in Korea. Journal of Ecology and Environment 1:58-77.
- Wang, H., H. Wang, Y. Xiao, X. Wang, L. Sun, J. Shi, A. Lin, J. Feng and Y. Wu. 2015. Low genetic diversity and moderate inbreeding risk of an insular endemic pit viper (*Gloydius shedaoensis*): Implication for conservation. Journal of Herpetology 49:190-199.
- Wang, R.F., Y.Q. Wu, Z. Liu and Y.F. Qu. 2014. Isolation and characterization of microsatellite loci in the Ussuri mamushi (*Gloydius ussuriensis*). Conservation Genetics Resources 6:783-784.
- Xu, Y., Q. Liu, E.A. Myers, L. Wang, S. Huang, Y. He, P. Peng and P. Guo. 2012. Molecular phylogeny of the genus *Gloydius* (Serpentes: Crotalinae). Asian Herpetological Research 3:127-132.

Submitted: April 12, 2023 Revised: August 30, 2023 Accepted: September 1, 2023