• Title/Summary/Keyword: leukemia inhibitory factor

Search Result 56, Processing Time 0.029 seconds

Effects of Extracellular Signaling on the Endogenous Expression of Self-Renewal-Stimulating Factor Genes in Mouse Embryonic Stem Cells

  • Gong, Seung-Pyo;Lee, Seung-Tae
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • In order to provide the basis for developing practical mouse embryonic stem cells (mESCs) culture method, how the endogenous level of self-renewal-stimulating factor genes was altered in the mESCs by different extracellular signaling was investigated in this study. For different extracellular signaling, mESCs were cultured in 2 dimension (D), 3D and integrin-stimulating 3D culture system in the presence or absence of leukemia inhibitory factor (LIF) and transcriptional level of $Lif$, $Bmp4$ and $Wnt3a$ was evaluated in the mESCs cultured in each system. The expression of three genes was significantly increased in 3D system relative to 2D system under LIF-containing condition, while only $Wnt3a$ expression was increased by 3D culture under LIF-free condition. Stimulation of integrin signaling in mESCs within 3D system with exogenous LIF significantly up-regulated transcriptional level of $Bmp4$, but did not induce transcriptional regulation of $Lif$ and $Wnt3a$. In the absence of LIF inside 3D system, the expression of $Lif$ and $Bmp4$ was significantly increased by integrin signaling, while it significantly decreased $Wnt3a$ expression. Finally, the signal from exogenous LIF significantly caused increased expression of $Lif$ in 2D system, decreased expression of $Bmp4$ in both 2D and 3D system, and decreased expression of $Wnt3a$ in integrin-stimulating 3D system. From these results, we identified that endogenous expression level of self-renewal-stimulating factor genes in mESCs could be effectively regulated through artificial and proper manipulation of extracellular signaling. Moreover, synthetic 3D niche stimulating endogenous secretion of self-renewal-stimulating factors will be able to help develop growth factor-free maintenance system of mESCs.

Effects of Flos Lonicerae Japonicae Water Extract on Cytokine Production in RAW 264.7 Mouse Macrophages (금은화(金銀花)물추출물이 마우스 대식세포의 사이토카인 생성에 미치는 영향)

  • Park, Wansu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.2
    • /
    • pp.66-72
    • /
    • 2022
  • Flos Lonicerae Japonicae (the flower buds of Lonicera japonica Thunberg) has been used as an antibacterial and antiviral drug in Korean Medicine. The aim of this study is to evaluate the effect of Flos Lonicerae Japonicae water extract (FL) on the production of cytokines in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). After 24 h treatment, the production of various cytokines from RAW 264.7 was measured with multiplex cytokine assay using Bio-Plex 200 suspension array system. FL at concentrations of 50, 100, and 200 ㎍/mL significantly inhibited productions of tumor necrosis factor-α, macrophage inflammatory protein (MIP)-1β, and MIP-2 in LPS-stimulated RAW 264.7 cells; FL at concentrations of 100 and 200 ㎍/mL significantly inhibited productions of leukemia inhibitory factor, LIX (CXCL5), and RANTES in LPS-stimulated RAW 264.7 cells; FL at concentrations of 200 ㎍/mL significantly inhibited productions of granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor in LPS-stimulated RAW 264.7 cells; FL at concentrations of 50 and 100 ㎍/mL significantly increased productions of interleukin (IL)-10 in LPS-stimulated RAW 264.7 cells; FL at concentrations of 50, 100, and 200 ㎍/mL significantly increased productions of IL-6 and interferon gamma-induced protein-10 in LPS-stimulated RAW 264.7 cells; FL at concentrations of 100 and 200 ㎍/mL significantly increased productions of monocyte chemoattractant protein-1 in LPS-stimulated RAW 264.7 cells. Taken together, these data mean that FL might modulate productions of cytokines, chemokines, and growth factor in LPS-stimulated macrophages. Further study needs to verify the exact mechanism for modulatory activities of FL with macrophages.

Anti-inflammatory Effect of Angelicae Gigantis Radix Water Extract on LPS-stimulated Mouse Macrophages (Lipopolysaccharide로 유발된 마우스 대식세포의 염증매개성 Cytokine 생성증가에 대한 참당귀 물추출물의 효능 연구)

  • Han, Hyo-Sang
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.113-119
    • /
    • 2013
  • Objectives : The purpose of this study was to investigate the effects of Angelicae Gigantis Radix Water Extract(AG) on the production of proinflammatory mediators in RAW 264.7 cells stimulated with lipopolysaccharide(LPS). Method : RAW 264.7 cells were cotreated with AG(50 and 100 ug/mL) and lipopolysaccharide(LPS; 1 ug/mL) for 24 hours. After 24 hour treatment, using Bead-based multiplex cytokine assay, concentrations of various cytokines such as interleukin(IL)-6, IL-$1{\beta}$, IL-10, tumor necrosis factor-alpha(TNF-${\alpha}$), granulocyte colony-stimulating factor(G-CSF), granulocyte macrophage colony-stimulating factor(GM-CSF), interferon inducible protein-10(IP-10), leukemia inhibitory factor(LIF), lipopolysaccharide-induced chemokine(LIX), monocyte chemoattractant protein-1(MCP-1), macrophage colony-stimulating factor(M-CSF), macrophage inflammatory protein(MIP)-$1{\alpha}$, MIP-$1{\beta}$, MIP-2, Regulated on Activation, Normal T cell Expressed and Secreted(RANTES) and vascular endothelial growth factor(VEGF) were measured. Result : AG significantly inhibited LPS-induced production of TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, and M-CSF from LPS-stimulated RAW 264.7 cells at the concentrations of 50 and 100 ug/mL. AG significantly inhibited LPS-induced production of MIP-$1{\beta}$, MIP-2, GM-CSF, and IL-6 from LPS-stimulated RAW 264.7 cells at the concentrations of 50 ug/mL. AG significantly inhibited LPS-induced production of VEGF from LPS-stimulated RAW 264.7 cells at the concentrations of 100 ug/mL. But AG did not show any significant effect on the production of MCP-1, LIF, LIX, IP-10 and IL-$1{\beta}$ from LPS-induced RAW 264.7 cells. Conclusion : These results suggest that AG has anti-inflammatory effect related with its inhibition of proinflammatory mediators such as TNF-${\alpha}$, MIP-$1{\alpha}$, G-CSF, RANTES, IL-10, MIP-$1{\beta}$, MIP-2, GM-CSF, IL-6, VEGF and M-CSF in LPS-induced macrophages.

Differential Effects of TNF-${\alpha}$ on the Survival and Apoptosis of Human Granulocytes and the Human Myeloid Leukemia Cell Line

  • Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.118-123
    • /
    • 2013
  • Tumor necrosis factor-alpha (TNF-${\alpha}$) is a proinflammatory cytokine that mediates the inflammatory response and immune functions, and modulates the proliferation, differentiation and cell death of cancer cells. The differential functions of TNF-${\alpha}$ in various human cells due to the formation of different stimulating pathway upon the binding of TNF-${\alpha}$ to its receptors. In the present study, we examined the different effects of TNF-${\alpha}$ on the survival and apoptosis between normal granulocytes and human myeloid leukemia HL-60 cells. Although TNF-${\alpha}$ did not affect on the constitutive apoptosis of granulocytes, TNF-${\alpha}$ strongly induced the apoptosis of HL-60 cells in a dose- and a time-dependent manner. TNF-${\alpha}$-induced apoptosis was occurred via the activation of caspase 8, caspase 9 and caspase 3/7 and the induction of ROS production in HL-60 cells. Also, BAY-11-7085, a NF-${\kappa}B$ inhibitor, blocked the TNF-${\alpha}$-induced apoptosis in HL-60 cells. NF-${\kappa}B$ may be involved in TNF-${\alpha}$-induced apoptotic signaling pathway in HL-60 cells. These results suggest that TNF-${\alpha}$ activates apoptotic pathways and its process depends on cell type and many cellular factors. A better understanding of the differential effect of TNF-${\alpha}$ on cell apoptosis and survival may provide important information that can be used to elucidate the specific inhibitory effect of TNF-${\alpha}$ on the cancer dis.

Molecular Mechanisms of Cell Cycle Arrest and Apoptosis by Dideoxypetrosynol A, a Polyacetylene from the Sponge Petrosia sp., in Human Monocytic Leukemia Cells

  • Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.243-251
    • /
    • 2006
  • Dideoxypetrosynol A, a polyacetylene from the marine sponge Petrosia sp., is known to exhibit significant selective cytotoxic activity against a small panel of human tumor cell lines, however, the mechanisms of which are poorly understood. In the present study, it was investigated the further possible mechanisms by which dideoxytetrosynol A exerts its anti-proliferative action in cultured human leukemia cell line U937. We observed that the proliferation-inhibitory effect of dideoxypetrosynol A was due to the induction of G1 arrest of the cell cycle and apoptosis, which effects were associated with up-regulation of cyclin D1 and down-regulation of cyclin E without any change in cyclin-dependent-kinases (Cdks) expression. Dideoxypetrosynol A markedly induced the levels of Cdk inhibitor p16/INK4a expression. Furthermore, down-regulation of phosphorylation of retinoblastoma protein (pRB) by this compound was associated with enhanced binding of pRB and the transcription factor E2F-1. The increase in apoptosis was associated with a dose-dependent up-regulation in pro-apoptotic Bax expression and activation of caspase-3 and caspase-9. Dideoxytetrosynol A decreased the levels of cyclooxygenase (COX)-2 mRNA and protein expression without significant changes in the levels of COX-1, which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. Furthermore, dideoxytetrosynol A treatment markedly inhibited the activity of telomerase, and the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by dideoxytetrosynol A treatment in a dose-dependent fashion. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of dideoxytetrosynol A.

  • PDF

Xanthium strumarium suppresses degranulation and pro-inflammatory cytokines secretion on the mast cells (비만세포에서의 창이자의 탈과립 및 pro-inflammatory cytokines 분비량에 미치는 영향)

  • Lyu, Ji-Hyo;Yoon, Hwa-Jung;Hong, Sang-Hoon;Ko, Woo-Shin
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.3
    • /
    • pp.82-93
    • /
    • 2008
  • Objective: Previously, the methanol extracts of the semen of Xanthium strumsrium could involved anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated Raw 264,7 cells, We evaluated the anti-allergic effects of X. strumarium on rat basophilic leukemia (RBL-2H3) cells, Methodes : To investigate the effect of X. strumarium on the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-induced RBL-2H3 cells. The effects of X. strumarium on the degranulation and the pro-inflammatory cytokines secretion and expression from RBL-2H3 cells were evaluated with $\beta$-hexosaminidase assay, ELISA, and RT-PCR analysis, In addition, we examined the effects of X. strumarium on nuclear factor (NF)-${\kappa}B$ activation and $I{\kappa}B-\alpha$ degradation using Western blot analysis. Results : X. strumarium inhibited degranulation and secretions and expressions of pro-inflammatory cytokines, such as tumor necrosis factor-alpha ($TNF-\alpha$), interleukin (IL)-4 and cyclooxygenase (COX)-2, on stimulated RBL-2H3 cells, however, X. strumarium not affect cell viability. In stimulated RBL-2H3 cells, the protein expression level of nuclear factor-kappa B (NF-${\kappa}B$) was decreased in the nucleus by X. strumarium. In addition, X. strumarium suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein in RBL-2H3 cells. Conclusion : These results suggest that X. strumarium inhibits the degranulation and secretion of pro-inflammatory cytokines through blockade of NF-${\kappa}B$ activation and I $I{\kappa}B-{\alpha}$ degradation.

  • PDF

조류의 다능성 생식세포주 확립 및 분화 특성에 관한 연구

  • 박태섭;한재용
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.40-46
    • /
    • 2001
  • The use of pluripotent stem cells has tremendous advantages for various purposes but these cell lines with proven germ-line transmission have been completely established only in the mouse. Embryonic germ (EG) cell lines are also pluripotent and undifferentiated stem cells established from primordial germ cells (PGCs). This study was conducted to establish and characterize the chicken EG cells derived from gonadal primordial germ cells. We isolated gonadal PGCs from 5.5-day-old (stage 28) White leghorn (WL) embryos and established chicken EG cells lines with EG culture medium supplemented with human stem cell factor (hSCF), murine leukemia inhibitory factor (mLIF), bovine basic fibroblast growth factor (bFGF), human interleukin-11 (hIL-11), and human insulin-like growth factor-I (hIGF-I). These cells grew continuously for 4 months (10 passages) on a feeder layer of mitotically active chicken embryonic fibroblasts. These cells were characterized by screening with the Periodic acid-Shiff's reaction, anti-SSEA-1 antibody, and a proliferation assay after several passages. As the results, the chicken EG cells maintained characteristics of undifferentiated stem cells as well as that of gonadal PGCs. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types when re-seeded onto culture dish. The chicken EG cells were injected into blastodermal layer at stage X and dorsal aorta of recipient embryo at stage 14 (incubation of 53hrs) and produced chimeric chickens with various differentiated tissues derived from the EG cells. The germline chimeras were also successfully induced by using EG cells. Thus, Chicken EG cells will be useful for the production of transgenic chickena and for studies of germ cell differentiation and genomic imprinting.

  • PDF

The Inhibitory Effects of Lactose-${\beta}$-sitosterol on the Inflammatory Responses of HMC-1 Cells and EoL-1 Cells

  • Yang, Eun-Ju;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • ${\beta}$-sitosterol glucoside exists in a variety of plants and have anti-tumor, anti-microbial, and immunomodulatory activities. Mast cells and eosinophils play important roles in a variety of inflammatory diseases, specifically asthma and atopic dermatitis. In the present study, we used lactose-${\beta}$-sitosterol (L-BS) and investigated the effect of L-BS on inflammatory responses of the human mast cell line, HMC-1 and the human eosinophilic leukemia cell line, EoL-1. In HMC-1 cells, L-BS significantly inhibited cell migration in response to stem cell factor without cytotoxicity. However, the mRNA expression of CC chemokine receptors (CCRs), including CCR1-5, were not altered after L-BS treatment in HMC-1 cells. LPS-induced IL-4 production was also suppressed by L-BS in a dose-dependent manner. In EoL-1 cells, the concentration ranging from 0.1 ${\mu}M$ to 10 ${\mu}M$ of L-BS had no cytotoxicity and had no effect on mRNA expression of major protein-mediators derived from activated eosinophils. However, 100 ${\mu}M$ of L-BS induced the apoptosis of EoL-1 cells in a time-dependent manner. This finding indicates the possibility of L-BS as a potential therapeutic molecule in inflammatory diseases and may contribute to the need to improve current therapeutic drugs.

The Effect of Polysaccharide from Angelica Gigas Nakai on Controlling the Differentiation of Human Embryonic Stem Cells

  • Park, Young-S.;Lee, Jae-E.;Lee, Seo-H.;Lee, Hyeon-Y.
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.4
    • /
    • pp.237-242
    • /
    • 2002
  • It was found that the purified extract from A. gigas Nakai (polysaccharide, M.W., 25 kD) controled differentiating human ES cells. Its optimal supplementation concentration was decided as 0.8 $({\mu}g/ml)$ to efficiently control the differentiation. It also enhanced the cell growth, compared to the control. However, most widely used and commercially available differentiating agent, Leukemia Inhibitory Factor (LIF) negatively affected on the cell growth even though it controls the differentiation of ES cells, down to 40-50 % based on morphological observation and telomerase activity. It was presumed that the extract first affected on cell membrane and resulted in controlling signal system, then amplify gene expression of telomere, which enhanced the telomerase activity up to three times compared to the control. LIF only increased the enzyme activity up to two times. It was confirmed that the extract from A. gigas Nakai could be used for substituting currently used differentiation controlling agent, LIF from animal resources as a cheap plant resource and not affecting the cell growth. It can broaden the application of the plants not only to functional foods and their substitutes but also to fine chemicals and most cutting-edge biopharmaceutical medicine.

Anti-allergic Effect of Seungmagalgeun-tang through Suppression of NF-${\kappa}B$ and p38 Mitogen-Activated Protein Kinase Activation in the RBL-2H3 Cells

  • Lyu, Ji-Hyo;Lyu, Sun-Ae;Yoon, Hwa-Jung;Ko, Woo-Shin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1572-1578
    • /
    • 2008
  • In previous report, Seungmagalgeun-tang (SGT) could exert its anti-inflammatory actions in the BV-2 microglial cells. However, study on the anti-inflammatory effect of SGT in mast cells has not been identified. Therefore, we examined on the anti-inflammatory effect of SGT on the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-induced rat basophilic leukemia (RBL-2H3) cells. SGT inhibited the release of ${\beta}$-hexosaminidase and secretion and expression of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-4 on RBL-2H3 cells, without affecting cell viability. The protein expression level of nuclear factor (NF)-${\kappa}B$ (p65) was decreased in the nucleus by SGT. In addition, SGT suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein, the activation of p38 mitogen-activated protein kinase (MAPK), and the expressions of cyclooxygenase (COX)-2 mRNA and protein level in RBL-2H3 cells. These results suggest that SGT could be involved anti-allergic effect by control of NF-${\kappa}B$ (p65) translocation into the nucleus through inhibition of $I{\kappa}B-{\alpha}$ degradation and suppression of COX-2 expression.