• Title/Summary/Keyword: lens assembly process

Search Result 29, Processing Time 0.021 seconds

UML Analysis and Digital Model Implementation for Micro-factory (초소형 공장의 객체지향 분석 및 디지털 모델구축)

  • Park, Sang-Ho;Choi, Sung-Il;Jung, Young-Sang;Song, Joon-Yub;Lee, Chang-Woo;Subramaniyam, Murali;Jang, Seck-Ho;Kim, Jin-Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.44-49
    • /
    • 2007
  • Recent manufacturing system requires development on new production technology to enable prompt manufacturing of diverse products. Most of the researchers have been working on micro-factory. Especially, focus on manufacturing of micro parts. Present manufacturing system consumes excessive resources in the form of energy and space to manufacture the micro parts. In this study, the micro lens module assembly system was modeled, analyzed with MST(Micro System Technology) Application Module and simulated through UML Language (Unified Modeling Language) with object-oriented logical model analysis method. Digital model of micro-factory was modeled, to execute the new paradigm of digitalization on products, resources and processes of micro-factory.

A Machine Vision System for Inspecting Tape-Feeder Operation

  • Cho Tai-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • A tape feeder of a SMD(Surface Mount Device) mounter is a device that sequentially feeds electronic components on a tape reel to the pick-up system of the mounter. As components are getting much smaller, feeding accuracy of a feeder becomes one of the most important factors for successful component pick-up. Therefore, it is critical to keep the feeding accuracy to a specified level in the assembly and production of tape feeders. This paper describes a tape feeder inspection system that was developed to automatically measure and to inspect feeding accuracy using machine vision. It consists of a feeder base, an image acquisition system, and a personal computer. The image acquisition system is composed of CCD cameras with lens, LED illumination systems, and a frame grabber inside the PC. This system loads up to six feeders at a time and inspects them automatically and sequentially. The inspection software was implemented using Visual C++ on Windows with easily usable GUI. Using this system, we can automatically measure and inspect the quality of ail feeders in production process by analyzing the measurement results statistically.

Evaporative Self-Assembly of Single-Walled Carbon Nanotubes for Field Effect Transistor (용매증발기반 자기조립을 이용한 단일벽 탄소나노튜브 정렬 및 트랜지스터 응용)

  • Kang, Seok Hee;Jeong, Do Young;Eom, Seong Un;Hwang, Cheong Seok;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.453-461
    • /
    • 2013
  • Controlling the stick and slip motions of the contact lines in a confined geometry comprised of a spherical lens with a flat substrate is useful for manufacturing polymer ring patterns. We used a sphere on a flat geometry, by which we could control the interfaces of the solution, vapor and substrate. By this method, hundreds of concentric ring-pattern formations of a linear conjugated polymer, poly [2-methoxy-5-(2-thylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), were generated with excellent regularity over large areas after complete solvent evaporation. Subsequently, the MEH-PPV ring patterns played a role as a directed template to organize highly regular concentric rings of single-walled carbon nanotubes(SWCNTs); when a droplet of the SWCNT suspension in water was casted onto the prepared substrate, hydrophobic polymer patterns confined the water dispersed SWCNTs in between the hydrophilicized $SiO_2/Si$ substrate. As the solvent evaporated, SWCNT-rings were formed in between MEH-PPV rings with controlled density. Finally, we used a lift-off process to produce SWCNT patterns by the removal of a sacrificial polymer template with organic solvent. We also fabricated a field effect transistor using self-assembled SWCNT networks on a $SiO_2/Si$ substrate.

Development of diameter 450 mm Cassegrain tlne collimator (직경 450 mm Cassegrain 형태 시준장치의 제작)

  • 양호순;이재협;이윤우;이인원;김종운;김도형
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.241-247
    • /
    • 2004
  • The collimator is necessary for the assembly and evaluation of high resolution satellite telescope. Traditionally, the off-axis paraboloid has been used as a collimator. However, it has some disadvantages in that it can suffer from air turbulence when the focal length of a collimator is long, which may result in some error in the measurement. In contrast, since the Cassegrain type collimator folds the beam, it occupies smaller space compared to the off-axis paraboloid for the same focal length. This can reduce the air turbulence, which can improve the measurement accuracy. In this paper, we explain the process of design and manufacturing of a diameter 450 mm Cassegrain type collimator, to evaluate the diameter 300 mm satellite telescope. After assembly of primary and secondary mirrors, the final wavefront error of the collimator was 0.07λ(λ=633 nm), which is the diffraction limit.

3D Feature Based Tracking using SVM

  • Kim, Se-Hoon;Choi, Seung-Joon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1458-1463
    • /
    • 2004
  • Tracking is one of the most important pre-required task for many application such as human-computer interaction through gesture and face recognition, motion analysis, visual servoing, augment reality, industrial assembly and robot obstacle avoidance. Recently, 3D information of object is required in realtime for many aforementioned applications. 3D tracking is difficult problem to solve because during the image formation process of the camera, explicit 3D information about objects in the scene is lost. Recently, many vision system use stereo camera especially for 3D tracking. The 3D feature based tracking(3DFBT) which is on of the 3D tracking system using stereo vision have many advantage compare to other tracking methods. If we assumed the correspondence problem which is one of the subproblem of 3DFBT is solved, the accuracy of tracking depends on the accuracy of camera calibration. However, The existing calibration method based on accurate camera model so that modelling error and weakness to lens distortion are embedded. Therefore, this thesis proposes 3D feature based tracking method using SVM which is used to solve reconstruction problem.

  • PDF

An Inspection System for Measuring Feeding Accuracy of Tape Feeders (테이프 피더의 부품공급 정밀도 측정을 위한 검사 시스템)

  • Jo, Tae-Hun;Lee, Seong-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.573-577
    • /
    • 2002
  • A tape feeder of a SMD(Surface Mount Device) mounter is a device that sequentially feeds electronic components on a tape reel to the pick-up system of the mounter. As components are getting much smaller, feeding accuracy of a feeder becomes one of the most important factors for successful component pick-up. Therefore, it is critical to keep the feeding accuracy to a specified level in the assembly and production of tape feeders. This paper describes a tape feeder inspection system that was developed to automatically measure and inspect feeding accuracy using machine vision. It consists of a feeder base, an image acquisition system, and a personal computer. The image acquisition system is composed of CCD cameras with lens, LED illumination systems, and a frame grabber inside the PC. This system loads up to six feeders at a time and inspects them automatically and sequentially. The inspection software was implemented using Visual C++on Windows NT with easily usable GUI. Using this system, we can automatically measure and inspect the quality of all feeders in production process by analyzing the measurement results statistically.

Optical Design of the Integrated Triplexer Fabricated by Micro Block Stacking Method (MBS 방법으로 제작한 집적형 Triplexer의 광학 설계)

  • Yoon, Hyun-Jae;Kim, Jong-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.191-197
    • /
    • 2011
  • In this paper, we have designed an integrated triplexer which is the basic component for a FTTH(Fiber To The Home) system which can transmit CATV and voice/data at the same time in a single fiber. The integrated triplexer can be fabricated with a novel technique of "Micro-Block Stacking (MBS)" method which automatically aligns the optical components in the optical beam pass using accurate ceramic holders. We analyze the displacement of the optical focus according to the tolerances of the component dimensions and the assembly process using code V simulator. For the transmitter, the most serious shift of the focal points is caused by the displacements of the LD spot. So the focal point moves up to $72{\mu}m$ from the center point for ${\pm}25{\mu}m$, ${\pm}25{\mu}m$, ${\pm}30{\mu}m$ displacements. For the receiver the most serious shift of the focal points is caused by the displacements of a 0.8mm ball lens (for the analog receiving part) and a micro ball lens (for the digital receiving part), and the focal point moves up to $55{\mu}$ for ${\pm}55{\mu}m$, ${\pm}5{\mu}m$, ${\pm}55{\mu}m$ micro ball lens displacements.

A Study on the Flying Stability of Optical Flying Head on the Plastic Disks (플라스틱 디스크상의 부상형 광헤드의 부상안정성에 관한 연구)

  • Kim, Soo-Kyung;Yoon, Sang-Joon;Choi, Dong-Hoon;Lee, Seung-Yop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.399-402
    • /
    • 2004
  • In the optical drive system, adopting the optical flying-type head (OFH) flying on a removable plastic disk, the flying stability of the small OFH should be carefully considered to ensure the reliability for first surface recording. Additional micro actuators for focus servo are discussed for better interface of optical flying head on thin cover layered plastic disk to eliminate focus error due to the non-uniformity of cover layer thickness and the tolerance of lens assembly. This study gives two simulation results on the flying stability of the OFH. One is the dependence of the flying height and pitch angle variations on the wavelength and amplitude of disk waviness. The other is the flying stability of the slider and suspension system during the dynamic load/unload (U/UL) process.

  • PDF

Design and Fabrication for the Development of Auto Pattern Maker (자동취형기 개발을 위한 설계 및 제작)

  • Lee, Young-Il;Kim, Jung-Hee;Park, Jee-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.231-239
    • /
    • 2013
  • Purpose: To design and fabricate the auto pattern maker for the development. Methods: we got the necessary data, needed in design, by using CAD. Based on the these data, we fabricated the trial product for the development of the auto pattern maker. Results: The auto pattern maker were composed with combinations of many elements; pattern making assembly, control panel, frame attachment and prober unit. The pattern making assembly was comprised of the cutter, the pattern holder, pattern remover and silence cover which could minimize the sound during the cutting process. The control panel was designed to be connected and operated with the main printed circuit board. The prober could get the eye shape data by scanning of 1.8 degrees around the groove of the frame through the encoding data according to the address. After starting, scanning was carried out in two passes, i.e. one right-handed and one left-handed. Communication connector could send the eye shape data from auto pattern maker to outer system with the RS232C transmission system. By using the one-way analysis of variance, we got the error rate of cut pattern size for ${\Phi}22mm$, ${\Phi}55mm$ and ${\Phi}62mm$. Because F-value was 0.510 and p-value was 0.601, no statistically significant differences were found. Also, the mean cutting error of the auto pattern maker was 0.0274 mm. Conclusions: we could succeed in making the trial product by applying it to the development of the auto pattern maker. The role of this auto pattern maker is to find a exact required size of lens to fit the frame by measuring the frame. The acquired data are transferred to outer system for grinding and finishing with patternless process. Also, the trial product can produce pattern to fit the frame. Therefore, it was confidently expected that the optometrists could handily produce pattern to fit the frame with this trial product and dispense the ophthalmic lens because of its efficiency and convenience compared to the past.