• Title/Summary/Keyword: length to diameter ratio

Search Result 796, Processing Time 0.029 seconds

Discharge Characteristics of Rotating Orifices with Length-to-Diameter Ratios and Inlet Corner Radii (길이 대 직경 비와 입구 모서리 반경에 따른 회전 오리피스의 송출 특성)

  • Ha, Kyoung-Pyo;Kang, Se-Won;Kauh, Sang-Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.957-966
    • /
    • 2000
  • The effect of rotation on the discharge coefficient of orifices with various length-to-diameter ratios and two different inlet corner radii was studied. Length-to-diameter ratios of the orifices range from 0.2 to 10, while the inlet shapes are square edged, or round edges of radius-to-diameter ratio of 0.5. From the experiment, we found that rotational discharge coefficient and Rotation number, when based on ideal exit velocity of the orifice considering momentum transfer from the rotor, describe the effect of rotation very well. In this study, the discharge coefficients of rotating orifices are shown to behave similar to those of the well-known non-rotating orifices. For both rotating and non-rotating orifices, the discharge coefficients increase with the length-to-diameter ratio until a maximum is reached. The flow reattachments in the relatively short orifices are responsible for the increase. The coefficient then decreases with the length-to-diameter ratio due to the friction loss along the orifice bore. The length-to-diameter ratio that yields maximum discharge coefficient, however, increases with the Rotation number because the increased flow-approaching angle requires larger length-to-diameter ratio for complete reattachment. The length-to-diameter ratio for complete reattachment is shorter for round edged orifices than that of square edged orifices by about a unit length-to-diameter ratio.

A Study on the Forming Characteristics of Forward and Backward Extrusions (전.후방 캔 압출공정의 성형특성 연구)

  • Shim Ji-Hun;Choi Ho-Joon;Ok Jeong-Han;Ham Byoung-Soo;Hwang Beong-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.86-92
    • /
    • 2005
  • In this paper a forward-backward can extrusion process are analyzed by using rigid-plastic FEM simulation. FEM simulation is conducted to investigate forming characteristics such as deformation modes fur different process parameters. Design parameters such as thickness ratio, punch angle, friction factor and diameter ratio are selected to study the effect of them on the pattern of material flow. The analysis is focused mainly on the influences of the design factors on deformation pattern in terms of forming load, extruded length ratio and volume ratio. It is known for the simulation that the forming load, the length ratio and the volume ratio increase as the thickness ratio (TR), the wall thickness in forward direction to that in backward direction, decreases. The various punch angles have slight influence on the forming load. length ratio and volume ratio. However friction factor have little effect on the forming characteristics such as the forming load, volume ratio and so on. In addition the forming load increases as diameter ratio (DR), the outer diameter of a can in forward direction to that in backward direction, increases. Furthermore the extruded length ratio is lowest with a certain value of DR=0.85 among diameter ratios. Pressure distribution exerted on the die-material interface is illustrated schematically.

A Numerical Study on the Drag of Axial Cylinder (종축 실린더의 항력에 대한 수치 해석적 연구)

  • Lee, Hyun-Bae;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.512-520
    • /
    • 2012
  • In this study, the numerical analysis for the flows around an axial cylinder is carried out in order to investigate the basic characteristics of drag of blunt body. A variation of drag and flow separation for the axial cylinder is investigated according to the length-diameter ratio. Also, the flow separation around the head is removed by rounding-off the front edge of the body to analyze the effect of drag reduction. Most of the drag turns out to be a pressure drag component and the variation of drag is caused by the change of pressure and velocity which is affected strongly by the flow separation at the edges of the axial cylinder. Especially, it is found that the pressure drag component acting on the back of axial cylinder, as known as the base drag, mainly changes the drag. As the length-diameter ratio of axial cylinder increases, the drag sharply decreases and the minimum is shown when the length-diameter ratio is about 2.4. Also, as the length-diameter ratio increases further above 2.4, the drag increases at a slower rate. The pressure drag is almost constant when the length-diameter ratio is greater than 8, but the increase of friction drag component is the reason for the increase of the drag. When flow separation is removed completely at the front edge of the axial cylinder, the pressure drag component is reduced to 12~17%, but the total drag is reduced to only 17%~32% due to the friction drag component that increases linearly proportional to the length-diameter ratio.

Effects of Length-to-Diameter Ratio on the Three-Dimensional Flow Within an Injection Hole Normally Oriented to the Mainflow (분사구멍의 길이가 수직 분사구멍 내부에서의 3차원 유동에 미치는 영향)

  • Lee, Sang Woo;Joo, Seong Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1255-1266
    • /
    • 1998
  • Effects of a length-to-diameter ratio, L/D, on the three-dimensional flow and aerodynamic loss within an injection hole, which is normally oriented to the mainflow, have been investigated by using a straight five-hole probe. The length-to-diameter ratio of the injection hole is varied to be 0.5 and 2.0 for blowing ratios of 0.5, 1.0 and 2.0. Regardless of the blowing ratio, flows within the hole and at the jet exit are strongly affected by the length-to-diameter ratio. In the case of L/D=0.5, the inside flow is considerably influenced by the mainflow, and the exit flow variation is found to be the greatest. The aerodynamic loss in this case is usually attributed to jet -mainflow interactions. In the case of L/D=2.0, the flow separation and reattachment in the inlet region are completely separated from the complicated exit flow, and the aerodynamic-loss production is mainly due to the inlet flow separation.

Three-dimensional morphometric study on the retromolar pad

  • Min-Sang Cha;Dae-Gon Kim;Yoon-Hyuk Huh;Lee-Ra Cho;Chan-Jin Park
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.6
    • /
    • pp.302-314
    • /
    • 2023
  • PURPOSE. The aim of this study was to classify the shapes of retromolar pads and assess their morphometric differences using a 3D model. MATERIALS AND METHODS. Two hundred fully edentulous or Kennedy Class I partially edentulous patients (400 retromolar pads) were enrolled. Scan data of the definitive mandibular casts produced through functional impressions were obtained using a 3D laser scanner. Seven parameters (transverse diameter, longitudinal diameter, transverse-contour length, longitudinal-contour length, longitudinal/transverse diameter ratio, longitudinal/transverse-contour length ratio, and angle of the retromolar pad line to the residual alveolar ridge line) were measured using image analysis software. Subsequently, the pads were classified according to the shape. Statistical analyses were performed using 95% confidence intervals. RESULTS. Classifying the retromolar pads into three shapes led to high intra-examiner reliability (Cronbach's alpha = 0.933). The pear shape was the most common (56.5%), followed by oval/round (27.7%) and triangular (15.8%) shapes. There were no significant differences between the left and right sides according to the shape and no significant differences in any parameter according to age. The transverse diameter and longitudinal/transverse diameter ratio differed between sexes (P < .05). The triangular shape had a significantly different transverse diameter, transverse-contour length, longitudinal/transverse diameter ratio, and longitudinal/transverse-contour length ratio compared with the pear and oval/round shapes (P < .05). CONCLUSION. From a clinical reliability standpoint, classifying retromolar pads into three shapes (oval/round, pear-shaped, and triangular) is effective. The differences in the sizes among the shapes were attributed to the transverse measurement values.

An analytical investigation of soil disturbance due to sampling penetration

  • Diao, Hongguo;Wu, Yuedong;Liu, Jian;Luo, Ruping
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.743-755
    • /
    • 2015
  • It is well known that the quality of sample significantly determines the accuracy of soil parameters for laboratory testing. Although sampling disturbance has been studied over the last few decades, the theoretical investigation of soil disturbance due to sampling penetration has been rarely reported. In this paper, an analytical solution for estimating the soil disturbance due to sampling penetration was presented using cavity expansion method. Analytical results in several cases reveal that the soil at different location along the sample centerline experiences distinct phases of strain during the process of sampling penetration. The magnitude of induced strain is dependent on the position of the soil element within the sampler and the sampler geometry expressed as diameter-thickness ratio D/t and length-diameter ratio L/D. Effects of sampler features on soil disturbance were also studied. It is found that the induced maximum strain decreases exponentially with increasing diameter-thickness ratio, indicating that the sampling disturbance will reduce with increasing diameter or decreasing wall thickness of sampler. It is also found that a large length-diameter ratio does not necessarily reduce the disturbance. An optimal length-diameter ratio is suggested for the further design of improved sampler in this study.

Tension Stiffening and Bond Length of Reinforced Concrete Members Subjected to Uniaxial Tension (1축 인장 부재의 인장강성 및 부착길이 효과)

  • 조능호;정원기;강희철;서정문;전영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.873-878
    • /
    • 2000
  • Tension stiffening effects of reinforced concrete member with large diameter bar, mainly used at reactor building of nuclear power plant, are studied by uniaxial structural tests. Bond length and stress of steel bar, size of steel bar, and compressive strength of concrete are evaluated to tension stiffening by uniaxial tests. Problems and solution during the uniaxial test are suggested. The prevent splitting cracks, concrete cover-to-bar diameter ratio $c/d_{b}$ is kept 2.6~2.8. Because the bond length is increased as the size of steel bar, the specimen length of the D35 steel bar is required at least 2.0 m. The specimen length must be decided with bond length as well as concrete cover-to-bar diameter ratio to prevent splitting crack.

A Comparison of Accuracy Between a Turbine and an Orifice Meter in the Field (현장여건에 따른 터빈 유량계와 오리피스 유량계의 정확도 비교)

  • An, Seung-Hee;Her, Jae-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.97-105
    • /
    • 1999
  • Orifice flow meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice flow meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio( $\beta$ ratio) and flow rate. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is $-7.3\%$ and $-3.5\%$, respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested in the standard manuals, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the more the flow measurement error. It means that the swirl effect on the orifice meter increases as the $\beta$ ratio decreases.

  • PDF

Parametric Study on the Joint Strength of Unidirectional and Fabric Hybrid Laminate (일방향-평직 복합재 혼합 적층판의 기계적 체결부 강도에 관한 인자연구)

  • 안현수;신소영;권진회;최진호;이상관;양승운
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.9-12
    • /
    • 2002
  • A parametric study has been conducted to investigate the effect of the geometry on the strength of an unidirectional and fabric hybrid laminated composite joint. Tests are conducted for the specimens with nine different edge-to-hole diameter or width-to-hole diameter ratios. For the finite element analysis, the characteristic length method is used, and the tests for determining the characteristic length are performed additionally. Nonlinear contact problem between the pin and laminate is modeled by the gap element in MSC/NASTRAN. Tsai-Wu failure criteria is applied to the stress on the characteristic curve. The finite element and experimental results shows good agreement in strength of composite joint. Results of the parametric study shows the effect of the geometry is remarkable in the specimens with width-to-hole diameter ratio less than 2.8 and edge-to-hole diameter ratio less than 1.4.

  • PDF

Prediction of Critical Reynolds Number in Stability Curve of Liquid Jet (II)

  • Lim, S.B.;So, J.D.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 1999
  • The prediction of the critical Reynolds number in the stability curie of liquid jet was mainly analyzed by the empirical correlations and the experimental data through the literature. The factors affecting the critical Reynolds number include Ohnesorge number, nozzle length-diameter ratio, ambient pressure and nozzle inlet type. The nozzle inlet type was divided into two groups according to the dependence of the critical Reynolds number on the length-to-diameter ratio of nozzle. The empirical correlations for the critical Reynolds number as a function of above factors mentioned are newly proposed.

  • PDF