• Title/Summary/Keyword: length estimation

Search Result 1,080, Processing Time 0.023 seconds

Step Length Estimation on a Slope Using Accelerometers and a Barometer (가속도계와 기압계를 이용한 경사면에서의 보행 거리 추정)

  • Hung, Tran Nhat;Suh, Young Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.334-340
    • /
    • 2013
  • Using a relationship between step length and accelerometer output, step length can be estimated. In this paper, we propose a new step length estimation algorithm, which can be used both for the plane and the slope by compensating the slope angle. The slope angle is estimated using a barometer and the slope angle is compensated by observing how the slope affects the step length estimation. The proposed algorithm is verified using five adult man walking data, where the average length error is about 3% regardless of the slope.

Target Length Estimation of Target by Scattering Center Number Estimation Methods (산란점 수 추정방법에 따른 표적의 길이 추정)

  • Lee, Jae-In;Yoo, Jong-Won;Kim, Nammoon;Jung, Kwangyong;Seo, Dong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.543-551
    • /
    • 2020
  • In this paper, we introduce a method to improve the accuracy of the length estimation of targets using a radar. The HRRP (High Resolution Range Profile) obtained from a received radar signal represents the one-dimensional scattering characteristics of a target, and peaks of the HRRP means the scattering centers that strongly scatter electromagnetic waves. By using the extracted scattering centers, the downrange length of the target, which is the length in the RLOS (Radar Line of Sight), can be estimated, and the real length of the target should be estimated considering the angle between the target and the RLOS. In order to improve the accuracy of the length estimation, parametric estimation methods, which extract scattering centers more exactly than the method using the HRRP, can be used. The parametric estimation method is applied after the number of scattering centers is determined, and is thus greatly affected by the accuracy of the number of scattering centers. In this paper, in order to improve the accuracy of target length estimation, the number of scattering centers is estimated by using AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), and GLE (Gerschgorin Likelihood Estimators), which are the source number estimation methods based on information theoretic criteria. Using the ESPRIT algorithm as a parameter estimation method, a length estimation simulation was performed for simple target CAD models, and the GLE method represented excellent performance in estimating the number of scattering centers and estimating the target length.

Adaptive threshold for discrete fourier transform-based channel estimation in generalized frequency division multiplexing system

  • Vincent Vincent;Effrina Yanti Hamid;Al Kautsar Permana
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.392-403
    • /
    • 2024
  • Even though generalized frequency division multiplexing is an alternative waveform method expected to replace the orthogonal frequency division multiplexing in the future, its implementation must alleviate channel effects. Least-squares (LS), a low-complexity channel estimation technique, could be improved by using the discrete Fourier transform (DFT) without increasing complexity. Unlike the usage of the LS method, the DFT-based method requires the receiver to know the channel impulse response (CIR) length, which is unknown. This study introduces a simple, yet effective, CIR length estimator by utilizing LS estimation. As the cyclic prefix (CP) length is commonly set to be longer than the CIR length, it is possible to search through the first samples if CP is larger than a threshold set using the remaining samples. An adaptive scale is also designed to lower the error probability of the estimation, and a simple signal-to-interference-noise ratio estimation is also proposed by utilizing a sparse preamble to support the use of the scale. A software simulation is used to show the ability of the proposed system to estimate the CIR length. Due to shorter CIR length of rural area, the performance is slightly poorer compared to urban environment. Nevertheless, satisfactory performance is shown for both environments.

Textbook Analysis about Length Estimation and Exploration for an Alternatives (길이 어림과 관련된 교과서 분석 및 대안 모색)

  • Ko, Jung-Hwa
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.587-610
    • /
    • 2010
  • This paper investigates the ways for estimation ability improvement in length, which is recently emphasized in measurement area of mathematics education. According to preceding studies, students' length estimation ability is considerably low. Revision curriculum tried to pursue estimation and feeling of massiveness responsive to trends in mathematics education. But, Such efforts are not reflected in textbooks and they are rather weak in the aspect of estimation and feeling of massiveness. This paper analyzes the contents related to length estimation in current textbooks critically and explores an alternatives. This paper is suggestive for textbook development to improve ability to estimate length.

Step Length Estimation Algorithm for Firefighter using Linear Calibration (선형 보정을 이용한 구난요원의 보폭 추정 알고리즘)

  • Lee, Min Su;Ju, Ho Jin;Park, Chan Gook;Heo, Moonbeom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.640-645
    • /
    • 2013
  • This paper presents a step length estimation algorithm for Pedestrian Dead Reckoning using linear calibrated ZUPT (zero velocity update) with a foot mounted IMU. The IMU consists of 3 axis accelerometer, gyro and magnetometer. Attitude of IMU is estimated using an inertial navigation algorithm. To increase accuracy of step length estimation algorithm, we propose a stance detection algorithm and an enhanced ZUPT. The enhanced ZUPT calculates firefighter's step length considering velocity error caused by sensor bias during one step. This algorithm also works efficiently at various motions, such as crawling, sideways and stair stepping. Through experiments, the step length estimation performance of the proposed algorithm is verified.

ARC-LENGTH ESTIMATIONS FOR QUADRATIC RATIONAL B$\acute{e}$zier CURVES COINCIDING WITH ARC-LENGTH OF SPECIAL SHAPES

  • Kim, Seon-Hong;Ahn, Young-Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.123-135
    • /
    • 2011
  • In this paper, we present arc-length estimations for quadratic rational B$\acute{e}$zier curves using the length of polygon and distance between both end points. Our arc-length estimations coincide with the arc-length of the quadratic rational B$\acute{e}$zier curve exactly when the weight ${\omega}$ is 0, 1 and ${\infty}$. We show that for all ${\omega}$ > 0 our estimations are strictly increasing with respect to ${\omega}$. Moreover, we find the parameter ${\mu}^*$ which makes our estimation coincide with the arc-length of the quadratic rational B$\acute{e}$zier curve when it is a circular arc too. We also show that ${\mu}^*$ has a special limit, which is used for optimal estimation. We present some numerical examples, and the numerical results illustrates that the estimation with the limit value of ${\mu}^*$ is an optimal estimation.

Estimation of Knee Muscle Length and Moment Arm Using Knee Joint Angle (무릎 관절각을 이용한 무릎 근육 길이와 모멘트 암 추정)

  • Lee, Jae-Kang;Nam, Yoon-Su
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.167-176
    • /
    • 2008
  • Recently, lots of studies are performed in developing of active orthosis. Exact and simple muscle force estimation is important in developing orthosis which assists muscle force for disabled people or physical laborers. Hill-type muscle model dynamics is common method for estimation of muscle forces. In Hill-type muscle model, we must know muscle length and moment arm which largely affect muscle force. And several methods are proposed to estimate muscle length and moment arm using joint angle. In this study, we compared estimation results of those method with data from body model of opensim to find which method is exact for estimation of muscle length and moment arm.

  • PDF

Automatic Estimation of Spatially Varying Focal Length for Correcting Distortion in Fisheye Lens Images

  • Kim, Hyungtae;Kim, Daehee;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.339-344
    • /
    • 2013
  • This paper presents an automatic focal length estimation method to correct the fisheye lens distortion in a spatially adaptive manner. The proposed method estimates the focal length of the fisheye lens by generating two reference focal lengths. The distorted fisheye lens image is finally corrected using the orthographic projection model. The experimental results showed that the proposed focal length estimation method is more accurate than existing methods in terms of the loss rate.

  • PDF

Biomass Estimation Using Length-Weight Regression for the Freshwater Cyclopoida

  • Hye-Ji Oh;Geun-Hyeok Hong;Yerim Choi;Dae-Hee Lee;Hye-Lin Woo;Young-Seuk Park;Yong-Jae Kim;Kwang-Hyeon Chang
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.111-122
    • /
    • 2024
  • Zooplankton biomass is essential for understanding the quantitative structure of lake food webs and for the functional assessment of biotic interactions. In this study, we aimed to propose a biomass (dry weight) estimation method using the body length of cyclopoid copepods. These copepods play an important role as omnivores in lake zooplankton communities and contribute significantly to biomass. We validated several previously proposed estimation equations against direct measurements and compared the suitability of prosomal length versus total length of copepods to suggest a more appropriate estimation equation. After comparing the regression analysis results of various candidate equations with the actual values measured on a microbalance-using the coefficient of variation, mean absolute error, and coefficient of determination-it was determined that the Total Length-DW exponential regression equation [W=0.7775×e2.0183L; W (㎍), L (mm)] could be used to calculate biomass with higher accuracy. However, considering practical issues such as the morphological similarity between species and genera of copepods and the limitations of classifying copepodid stages, we derived a general regression equation for the pooled copepod community rather than a species-specific regression equation.

Exploring the Accuracy and Methods of Estimation on Base Physical Quantities (기본물리량 어림의 정확성 및 방법에 대한 탐색)

  • Song, Jin-Woong;Kim, Hae-Sun
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.1
    • /
    • pp.76-88
    • /
    • 2001
  • This study explored people's accuracy and methods of estimating some base physical quantities, i.e. length, mass, time and temperature. A total of 40 members, ranging from freshmen to professors, of a physics education department of a local university were asked to make two different kinds of estimations, intuitive and operational, on two sets of objects. For intuitive estimation, they were asked to make estimations on four given objects (length - wood chopsticks, mass - rubber eraser, time electric fan, temperature - water in a cup) as soon as they faced with the objects, usually within a few seconds of seeing. For operational estimation, they were allowed to make estimations on a different set of objects (length - plastic rod, mass - lock, time - simple pendulum, temperature - water in a cup) with enough time and they could apply various available methods (e.g. using pencil to estimate the object's length, counting their own pulse rate to estimate time) for the estimation. The findings of this study can be summarized as follows: (1) for length, mass and temperature the intuitive estimations were better performed while for the time estimation the result was the reverse; (2) there was no positive relationship between the amount of physics experience and the accuracy of the estimation; (3) in general, people's accuracy of the length estimation was best performed while their mass estimation was worst performed; (4) people used their own various methods for estimation, esp. using nearby objects around them and applying mental units which have convenient values (e.g. 30cm, 50cm, 1kg, 1 Keun, 1 second).

  • PDF