Browse > Article
http://dx.doi.org/10.12941/jksiam.2011.15.2.123

ARC-LENGTH ESTIMATIONS FOR QUADRATIC RATIONAL B$\acute{e}$zier CURVES COINCIDING WITH ARC-LENGTH OF SPECIAL SHAPES  

Kim, Seon-Hong (DEPARTMENT OF MATHEMATICS, SOOKMYUNG WOMEN'S UNIVERSITY)
Ahn, Young-Joon (DEPARTMENT OF MATHEMATICS EDUCATION, CHOSUN UNIVERSITY)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.15, no.2, 2011 , pp. 123-135 More about this Journal
Abstract
In this paper, we present arc-length estimations for quadratic rational B$\acute{e}$zier curves using the length of polygon and distance between both end points. Our arc-length estimations coincide with the arc-length of the quadratic rational B$\acute{e}$zier curve exactly when the weight ${\omega}$ is 0, 1 and ${\infty}$. We show that for all ${\omega}$ > 0 our estimations are strictly increasing with respect to ${\omega}$. Moreover, we find the parameter ${\mu}^*$ which makes our estimation coincide with the arc-length of the quadratic rational B$\acute{e}$zier curve when it is a circular arc too. We also show that ${\mu}^*$ has a special limit, which is used for optimal estimation. We present some numerical examples, and the numerical results illustrates that the estimation with the limit value of ${\mu}^*$ is an optimal estimation.
Keywords
Quadratic rational B$\acute{e}$zier curve; arc-length; estimation; weight; parameter; coincident;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Pallikaris and G. Latsas. New algorithm for great elliptic sailing (GES). J. Navi., 62:497-507, 2009.
2 T. Pavlidis. Curve fitting with conic splines. ACM Trans. Graph., 2:1-31, 1983.   DOI
3 A. F. Rasmussen and M. S. Floater. A point-based method for estimating surface area. In Proceedings of the SIAM Conference on Geometric Design, 2005.
4 J. A. Roulier. Specifying the arc length of Bezier curves. Comp. Aided Geom. Desi., 10:25-56, 1993.   DOI   ScienceOn
5 J. A. Roulier and B. Piper. Prescribing the length of parametric curves. Comp. Aided Geom. Desi., 13:3-22, 1996.   DOI   ScienceOn
6 J. A. Roulier and B. Piper. Prescribing the length of rational Bezier curves. Comp. Aided Geom. Desi., 13:23-42, 1996.   DOI   ScienceOn
7 M. Schechter. Which way is jerusalem? Navigating on a spheroid. The College Mathematics Journal, 38:96-105, 2007.
8 W.-K. Tseng and H.-S. Lee. Navigation on a great ellipse. J. Mari. Scie. Tech., 18:369-375, 2010.
9 H.Wang, J. Kearney, and K. Atkinson. Arc-length parametrized spline curves for real-time simulation. In Tom Lyche, Marie-Laurence Mazure, and Larry L. Schumaker, editors, Curve and Surface Design, pages 387-396, 2002.
10 M. S. Floater, A. F. Rasmussen, and U. Reif. Extrapolation methods for approximating arc length and surface area. Numer. Alg., 44:235-248, 2007.   DOI   ScienceOn
11 J. Gravesen. Adaptive subdivision and the length and energy of Bezier curves. Computational Geometry, 8:13-31, 1997.   DOI   ScienceOn
12 J. Gravesen. The arc-length and energy of rational Bezier curves. Mat-report 1997/26, Department of Mathematics, Technical University of Denmark, 1997.
13 E. T. Lee. The rational Bezier representation for conics. In geometric modeling : Algorithms and new trends, pages 3-19. SIAM, Academic Press, 1987.
14 G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Morgan-Kaufmann, San Francisco, 2002.
15 J. Malczak. Quadratic Bezier curve length. Undated web page; http://segfaultlabs.com/docs/quadratic-bezier-curve-length, accessed 2010.
16 E. Boebert. Computing the arc length of cubic Bezier curves, 1993. http://steve.hollasch.net/cgindex/curves/cbezarclen.html, accessed 2010.
17 M. A. Earle. A vector solution for navigation on a great ellipse. J. Navi., 53:473-481, 2000.   DOI   ScienceOn
18 M. Floater. High-order approximation of conic sections by quadratic splines. Comp. Aided Geom. Desi., 12(6):617-637, 1995.   DOI   ScienceOn
19 M. Floater. An O($h^{2n}$) Hermite approximation for conic sectoins. Comp. Aided Geom. Desi., 14:135-151, 1997.   DOI   ScienceOn
20 M. S. Floater. Arc length estimation and the convergence of polynomial curve interpolation. Journal BIT Numerical Mathematics, 45:679-694, 2005.   DOI
21 M. S. Floater and A. F. Rasmussen. Point-based methods for estimating the length of a parametric curve. Journal of Computational and Applied Mathematics, 196:512-522, 2006.   DOI   ScienceOn
22 Y. J. Ahn. Conic approximation of planar curves. Comp. Aided Desi., 33:867-872, 2001.   DOI   ScienceOn
23 Y. J. Ahn. Helix approximation with conic and qadratic Bezier curves. Comp. Aided Geom. Desi., 22:551-565, 2005.   DOI   ScienceOn
24 Y. J. Ahn, Y. S. Kim, and Y. Shin. Approximation of circular arcs and offset curves by Bezier curves of high degree. J. Comp. Appl. Math., 167:405-416, 2004.   DOI   ScienceOn
25 Y. J. Ahn. Approximation of conic sections by curvature continuous quartic Bezier curves. Comp. Math. Appl., 60:1986-1993, 2010.   DOI   ScienceOn
26 Y. J. Ahn and H. O. Kim. Curvatures of the quadratic rational Bezier curves. Comp. Math. Appl., 36:71-83, 1998.