• 제목/요약/키워드: leg trajectory

검색결과 72건 처리시간 0.031초

계산-토크 제어와 임피던스 제어를 이용한 2족 보행 로봇의 제어 (Control of Biped Robots Based on Impedance Control and Computed-Torque Control)

  • 정호암;박종현
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1513-1519
    • /
    • 2000
  • This paper proposes a hybrid control method of using impedance control and the computed-torque control for biped robot locomotion. Computed torque control is used for supporting (constrained) leg. For the free leg, the impedance control is used, where different values of impedance parameters are used depending on the gait phase of the biped robot. To reduce the magnitude of an impact and guarantee a stable footing when a foot contacts with the ground, this paper proposes to increase the damping of the leg drastically and to modify the reference trajectory of the leg. Computer simulations with a 3 -dof environment model for which a combination of a nonlinear and a linear compliant models is used, show that the proposed controller is superior to the computed-torque controllers in reducing impacts and stabilizing the footing.

병렬형 다리 구조를 가진 2족 보행 로봇의 설계 및 제어 (New Parallel Mechanism for Biped Robots)

  • 윤정한;연제성;권오홍;박종현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.810-815
    • /
    • 2004
  • In this paper, we propose new parallel mechanism of a 3 dimensional biped robot whose each leg is composed of two 3-dof parallel platforms linked serially. This proposed parallel mechanism is able to move freely in the man-made environment and is applied to various fields, such as medical, welfare, and so on. And a total weight of each leg is expected to be lighter than serial linked leg. One side leg consists of a 3-dof orientation platform and 3-dof asymmetric parallel platform. The former consists of three active linear actuators and seven passive joints, and the latter of two active linear actuators, one active rotational actuator and eight passive joints. Thus, there are two kinds of parallel platforms each chain's elements and active joint's positions are different for the biped robot to move freely like a serial link without the kinematics constraints. The effectiveness and the performance of the proposed parallel mechanism and locomotion trajectory are shown in computer simulations with a 12-DOF parallel biped robot.

  • PDF

유전 알고리즘 기반의 이족보행로봇 시스템에 관한 연구 (A Study on Genetic Algorithm-based Biped Robot System)

  • 공정식;한경수;김진걸
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.135-143
    • /
    • 2003
  • This paper presents the impact minimization of a biped robot by using genetic algorithm. In case we want to accomplish the designed plan under the special environments, a robot will be required to have walking capability and patterns with legs, which are in a similar manner as the gaits of insects, dogs and human beings. In order to walk more effectively, studies of mobile robot movement are needed. To generate optimal motion for a biped robot, we employ genetic algorithm. Genetic algorithm is searching for technology that can look for solution from the whole district, and it is possible to search optimal solution from a fitness function that needs not to solve differential equation. In this paper, we generate trajectories of gait and trunk motion by using genetic algorithm. Using genetic algorithm not only on gait trajectory but also on trunk motion trajectory, we can obtain the smoothly stable motion of robot that has the least impact during the walk. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

드롭랜딩 시 착지형태에 따른 충격흡수구간의 운동역학적 특성 (The Biomechanical Properties of the Shock Absorption Phase during Drop Landing According to Landing Types)

  • 박규태;유경석
    • 한국운동역학회지
    • /
    • 제25권1호
    • /
    • pp.29-37
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the biomechanical properties of shock absorption strategy and postural stability during the drop landing for each types. Methods : The motions were captured with Vicon Motion Capture System, with the fourteen infra-red cameras (100Hz) and synchronized with GRF(ground reaction force) data(1000Hz). Ten male soccer players performed a drop landing with single-leg and bi-legs on the 30cm height box. Dependent variables were the CoM trajectory and the Joint Moment. Statistical computations were performed using the paired t-test and ANOVA with Turkey HSD as post-hoc. Results : The dominant leg was confirmed to show a significant difference between the left leg and right leg as the inverted pendulum model during Drop Landing(Phase 1 & Phase 2). One-leg drop landing type had the higher CoM displacement, the peak of joint moment with the shock absorption than Bi-leg landing type. As a lower extremity joint kinetics analysis, the knee joint showed a function of shock absorption in the anterior-posterior, and the hip joint showed a function of the stability and shock absorption in the medial-lateral directions. Conclusion : These findings indicate that the instant equilibrium of posture balance(phase 1) was assessed by the passive phase as Class 1 leverage on the effect of the stability of shock absorption(phase 2) assessed by the active phase on the effect of Class 2 leverage. Application : This study shows that the cause of musculo-skeletal injuries estimated to be focused on the passive phase of landing and this findings could help the prevention of lower damage from loads involving landing related to the game of sports.

E-I철심을 이용한 변압기형 초전도한류기의 권선 위치에 따른 전류제한 및 자화특성 분석 (Analysis on Current Limiting and Magnetizing Characteristics Due to Winding Locations of Superconducting Fault Current Limiter Using E-I Core)

  • 김보희;최상재;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권2호
    • /
    • pp.106-110
    • /
    • 2017
  • This paper compared current limiting characteristics of superconducting fault current limiter (SFCL) using E-I core due to the location of windings. Since E-I core has three legs and two magnetic paths, the current limiting characteristics of SFCL were expected to be affected by the installation location of windings, either center leg or right/left leg. To analyze its characteristics, the electrical equivalent circuit of the SFCL were derived and the electromagnetic analysis for the SFCL with the designed structure were performed. From the short-circuit tests, the hysteresis curve and the voltage-current trajectory of the SFCL due to the installation location of windings were extracted and compared each other. The SFCL with windings in the center leg of E-I core was shown to be larger magnetizing inductance compared to the one with windings in the right or left leg of E-I, which was analyzed from the hysteresis curve. In addition, larger decreased fault current right after the fault occurrence in the SFCL with windings in the center leg of E-I core was confirmed than the SFCL with windings in the right or left leg of E-I.

수중에서 회전조절과 장애물 훈련이 편마비 환자의 전정기능과 균형조절에 미치는 영향 (The Effect of Balance Control and Vestibular Function by an Aquatic Rotation Control and the Obstacle Avoidance Underwater with Hemiplegia Patients)

  • 권혜민;김수현;김현진;오석;최지호;김태열
    • 대한임상전기생리학회지
    • /
    • 제8권1호
    • /
    • pp.43-50
    • /
    • 2010
  • Purpose : The objective of this study is to effect of an aquatic rotation control and obstacle avoidance when conducted underwater on hemiplegia patient's balance ability and vestibular function. Methods : Twelve hemiplegia patients participated and were randomly assigned to a control group(I) with standard physical therapy and an aquatic group(II) with an aquatic rotation control, obstacle avoidance and standard physical therapy as well. The aquatic group trained using a Halliwick rotation control and obstacle avoidance through 3 times per week over 6 weeks. For all subjects, vestibular function, their balance, the change of electrooculogram (EOG), the change of accelerometer axis and torsiometer according to visual sense, vestibular sense with galvanic vestibular stimulation (GVS) or not during leg close stance were measured. Results : The EOG in the vertical and horizontal (p<0.05) were both significantly lowered. The change was significantly lower in the trajectory range of motion of trunk and spine with torsiometer when leg close stand (p<0.01) and leg close stand with GVS (p<0.01). The centre of gravity accelerated, there were reduced significantly difference X and Y axis of accelerometer during the closing of the leg without vision (p<0.05). There were reduced significantly difference X and Z axis of accelerometer during the closing of the leg with GVS (p<0.05). There were reduced significantly difference X and Z axis of accelerometer during the closing of the leg and close eyes with GVS (p<0.05). Conclusion : The balance ability, vestibular system and postural control is improved.

도립 진자형 이족보행로봇을 위한 안정보행 (Stable Walking for an Inverted Pendulum Type Biped Robot)

  • 강찬수;노경곤;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.456-459
    • /
    • 2003
  • This paper deal with the biped walking stability by inverted pendulum type balancing joints. This model is hard to interpretation for the nonlinearity caused by upper direction movement then conventional model which have roll and prismatic joints. We can interpret this model by a linear approximation or interpolation method. This paper use a linear approximation method that can decide a movement of upper direction. Inverted pendulum type balancing joints have a advantage of less movement for keep stability and similar with human than conventional model and this model can be used for humanoid robot. We can see a stability of biped by ZMP(Zero Moment Point). Genetic algorithm is used for trajectory planning that is important for stable walking of biped.

  • PDF

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

A Study of the Obstacle Avoidance for a Quadruped Walking Robot Using Genetic and Fuzzy Algorithm

  • Lee, Bo-Hee;Kong, Jung-Shik;Kim, Jin-Geol
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.228-231
    • /
    • 2003
  • This paper presents the leg trajectory generation for the quadruped robot with genetic-fuzzy algorithm. To have the nobility even at uneven terrain, a robot is able to recognize obstacles, and generates moving path of body that can avoid obstacles. This robot should have its own avoidance algorithm against obstacles, forwarding to target without collision. During walking period, n robot recognizes obstacle from external environment with a PSD and some interface, and this obstacle information is converted into proper the body rotation angle by fuzzy inference engine. After this process, we can infer the walking direction and walking distance of body, and finally can generate the optimal Beg trajectory using genetic algorithm. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

이족 보행 로봇을 위한 추적 제어 (Tracking Control for Biped Robot)

  • 이용권;박종현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.315-318
    • /
    • 1995
  • In this paper, an optimal trunk trajectory for stable walking of biped robots is expressed as a simple differential equation, which is then solved by numerical methods. We used ZMP (Zero Moment Point), the virtual total ground reaction point within the region of the supporting food, as the criterion of stability of biped robot walking. If the ZMP is located outside of the stable region in dynamic walking, biped robots fall down. The biped robot considered in this paper consists of two legs and a trunk. The trajectories of the two legs and the ZMP of the biped robot are determined such that they are similar ti those of a human. Based upon those trajectories, the trunk trajectory is solved by numerically integrating differential dynamic equations. Leg motions are controlled by the computed torque control method. The effectiveness of control algorithm as well as the trajectories is confirmed by computer simulations.

  • PDF