• Title/Summary/Keyword: left *-bimultiplier

Search Result 1, Processing Time 0.016 seconds

On *-bimultipliers, Generalized *-biderivations and Related Mappings

  • Ali, Shakir;Khan, Mohammad Salahuddin
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • In this paper we dene the notions of left *-bimultiplier, *-bimultiplier and generalized *-biderivation, and to prove that if a semiprime *-ring admits a left *-bimultiplier M, then M maps R ${\times}$ R into Z(R). In Section 3, we discuss the applications of theory of *-bimultipliers. Further, it was shown that if a semiprime *-ring R admits a symmetric generalized *-biderivation G : R ${\times}$ R ${\rightarrow}$ R with an associated nonzero symmetric *-biderivation R ${\times}$ R ${\rightarrow}$ R, then G maps R ${\times}$ R into Z(R). As an application, we establish corresponding results in the setting of $C^*$-algebra.