• Title/Summary/Keyword: leeward

Search Result 109, Processing Time 0.024 seconds

Papers : Vortex Flow and Aerodynamic Load Characteristics of the Delta Wing / LEX Configuration in Sideslip (논문 : 옆미끄럼이 있는 삼각 날개 / LEX 형상의 와류와 공력 특성)

  • Son,Myeong-Hwan;Lee,Gi-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.37-45
    • /
    • 2002
  • The vortex flow and aerodynamic load characteristics of a $65^{\circ}$ sweep delta wing with the leading edge extension in sideslip condition is investigated experimentally. The freestream velocity is 40 m/sec, which corresponds to a Reynolds number per meter of $1.76{\times}10^6$ based on the wing root chord. The angles of attack range from $12^{\circ}$ to $28^{\circ}$, and the sideslip angles treated are $0^{\circ}$ , $-10^{\circ}$, $-20^{\circ}$. The LEX vortex of the leeward side. The LEX and wing vortics coalesce to to become a concentrated strong vortex or to break down at down at downstream position. Due to the interation of the LEX and wing vortices, a high suction pressure is maintained on the windward wing surface, and a low suction pressure is formed on the leeward wing surface

Effect of noise barrier on aerodynamic performance of high-speed train in crosswind

  • Zhao, Hai;Zhai, Wanming;Chen, Zaigang
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.509-525
    • /
    • 2015
  • A three-dimensional aerodynamic model and a vehicle dynamics model are established to investigate the effect of noise barrier on the dynamic performance of a high-speed train running on an embankment in crosswind in this paper. Based on the developed model, flow structures around the train with and without noise barrier are compared. Effect of the noise barrier height on the train dynamic performance is studied. Then, comparisons between the dynamic performance indexes of the train running on the windward track and on the leeward track are made. The calculated results show that the noise barrier has significant effects on the structure of the flow field around the train in crosswind and thus on the dynamic performance of the high-speed train. The dynamic performance of the train on the windward track is better than that on the leeward track. In addition, various heights of the noise barrier will have different effects on the train dynamic performance. The dynamic performance indexes keep decreasing with the increase of the noise barrier height before the height reaches a certain value, while these indexes have an inverse trend when the height is above this value. These results suggest that optimization on the noise barrier height is possible and demonstrate that the designed noise barrier height of the existing China Railway High-speed line analysed in this article is reasonable from the view point of the flow field structure and train dynamic performance although the noise barrier is always designed based on the noise-related standard.

Scattering of a Kelvin Wave by a Cylindrical Island (원통형 섬에 의한 Kelvin 파의 산란)

  • Lee, Sang-Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.177-185
    • /
    • 1993
  • The theory for long wave scattering (Proudman, 1914: Longuet-Higgins, 1970) is applied to a tidal-frequency Kelvin wave propagating around a small cylindrical island in a shelf sea of uniform depth. The theory includes the effects of bottom friction on wave propagation. The theoretical analysis of the Kelvin wave around the island. this amplitude change results in a uniform amplitude of the total wave along the circumference of the island in an inviscid fluid, and the dynamic cause of this is explained in terms of Coriolis effects. Bottom friction attenuates the amplitude of the total wave from the frontal side of the island to the leeward side, but the amplitude variation along the coast becomes symmetric to the line connecting both idea. The phase of the scattered wave contributes to more rapid travel of the total wave in the front and leeward side than farther offshore. The effects of bottom friction on the wave phase around the island are negligible.

  • PDF

Investigation of surface pressures on CAARC tall building concerning effects of turbulence

  • Li, Yonggui;Yan, Jiahui;Chen, Xinzhong;Li, Qiusheng;Li, Yi
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • This paper presents an experimental investigation on the surface pressures on the CAARC standard tall building model concerning the effects of freestream turbulence. Two groups of incidence turbulence are generated in the wind tunnel experiment. The first group has an approximately constant turbulence intensity of 10.3% but different turbulence integral scale varying from 0.141 m to 0.599 m or from 0.93 to 5.88 in terms of scale ratio (turbulence integral scale to building dimension). The second group presents similar turbulence integral scale but different turbulence intensity ranging from 7.2% to 13.5%. The experimental results show that the mean pressure coefficients on about half of the axial length of the side faces near the leading edge slightly decrease as the turbulence integral scale ratio that is larger than 4.25 increases, but respond markedly to the changes in turbulence intensity. The root-mean-square (RMS) and peak pressure coefficients depend on both turbulence integral scale and intensity. The RMS pressure coefficients increase with turbulence integral scale and intensity. As the turbulence integral scale increases from 0.141 m to 0.599 m, the mean peak pressure coefficient increases by 7%, 20% and 32% at most on the windward, side faces and leeward of the building model, respectively. As the turbulence intensity increases from 7.2% to 13.5%, the mean value of peak pressure coefficient increases by 47%, 69% and 23% at most on windward, side faces and leeward, respectively. The values of cross-correlations of fluctuating pressures increase as the turbulence integral scale increases, but decrease as turbulence intensity increases in most cases.

CFD Study on the Influence of Atmospheric Stability on Near-field Pollutant Dispersion from Rooftop Emissions

  • Jeong, Sang Jin;Kim, A Ra
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The aim of this work is to investigate the effect of atmospheric stability on near-field pollutant dispersion from rooftop emissions of a single cubic building using computational fluid dynamics (CFD). This paper used the shear stress transport (here after SST) k-${\omega}$ model for predicting the flow and pollutant dispersion around an isolated cubic building. CFD simulations were performed with two emission rates and six atmospheric stability conditions. The results of the simulations were compared with the data from wind tunnel experiments and the result of simulations obtained by previous studies in neutral atmospheric condition. The results indicate that the reattachment length on the roof ($X_R$) obtained by computations show good agreement with the experimental results. However, the reattachment length of the rooftop of the building ($X_F$) is greatly overestimated compared to the findings of wind tunnel test. The result also shows that the general distribution of dimensionless concentration given by SST k-${\omega}$ at the side and leeward wall surfaces is similar to that of the experiment. In unstable conditions, the length of the rooftop cavity was decreased. In stable conditions, the horizontal velocity in the lower part around the building was increased and the vertical velocity around the building was decreased. Stratification increased the horizontal cavity length and width near surface and unstable stratification decreased the horizontal cavity length and width near surface. Maintained stability increases the lateral spread of the plume on the leeward surface. The concentration levels close to the ground's surface under stable conditions were higher than under unstable and neutral conditions.

Papers : Effect of Sideslip on the Vortex Flow over a Delta Wing (논문 : 옆미끄럼각이 삼각 날개 와류에 미치는 영향)

  • Son,Myeong-Hwan;Lee,Gi-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The effects of sideslip on the vortex over a delta wing was investigated experimentallu at a free strean velocity of 40 m/sec, corresponding to a Reynolds number of 1.76$\times$$10^6$, based on the root chord. The angles of attack ranged from $16{^{\circ}}$ to $28{^{\circ}}$, and the sideslip angles treated were $0{^{\circ}}$, $-10{^{\circ}}$, and $-20{^{\circ}}$. It was observed that the sideslip decreased the strengths of the vortices of both windward and leeward sides of the wing, and promoted the vortex breakdown on the windward side. At sideslip angle of $-10{^{\circ}}$, the vortex strength of leeward side was increased as the angle of attack increased. This asymmetric development and breakdown of vortices in sideslip condition would cause an abrubt change of the rolling moment at a high angle of of attack, which could be considered as a rolling moment instability.

Visualization and Flowfield Measurements of the Vortical Flow over a Double-Delta Wing

  • Sohn, Myong-Hwan;Jang, Young-IL
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 2003
  • The vortical flow of a 65-deg flat plate delta wing with a leading edge extension(LEX) was examined through off-surface visualization, 5-hole probe and hot-film measurements. The off-surface flow visualization technique used micro water droplets generated by a home-style ultrasonic humidifier and a laser beam sheet. The angles of attack ranged from 10 to 30 degrees, and the sideslip angles ranged from 0 to -15 degrees. The Reynolds number was $1.82{\times}10^5$ for the flow visualization, and $1.76{\times}10^6$ for the 5-hole probe and hot-film measurements. The comparison of the visualization photos and the flow field measurement showed that the two results were in a good agreement for the relative position and the structure of the wing and LEX vortices, even though the flow Reynolds numbers of the two results were much different. The wing vortex and the LEX vortex coil each other while maintaining a comparable strength and identity at zero sideslip. Neither a looping of the wing vortex around the strake vortex, nor the lopsided coiling of the stronger strake and the weaker wing vortices was observed. At non-zero sideslip, the downward movement of the LEX vortex when going downstream was enhanced on the windward side, and the downward and inboard movement of the LEX vortex when going downstream was suppressed on the leeward side. The counterclockwise coiling of the wing and LEX vortices was decreased significantly on the leeward side.

Analysis of the Interaction Between Hypersonic Free Stream and Side Jet Flow Using a DSMC Method (직접모사법을 이용한 극음속 대기 유동과 측면 제트의 상호 작용 해석)

  • Kim, Min-Gyu;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • The interaction between hypersonic free stream and side jet flow at high altitudes is investigated by using the direct simulation Monte Carlo (DSMC) method. In order to alleviate the difficulty associated with the large density difference between the free stream and the side jet flow and to simulate the two flows simultaneously, a weighting factor technique is applied. For validation, the corner flow over a pair of plates perpendicularly attached is calculated with and without a side jet, and the results are compared with experiment. For a more realistic configuration, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet is injected into the free stream and the effect on the aerodynamic force and moment is observed at various flow angles. The lambda shock effect and the wake structure are studied in terms of the surface pressure differential. A higher interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

Analyzing Drift Patterns of Spray Booms with Different Nozzle Types and Working Pressures in Wind Tunnel (풍동실험에 의한 붐식 살포 농약의 노즐형태와 분사압력에 따른 비산 특성 분석)

  • Park, Jinseon;Lee, Se-Yeon;Choi, Lak-Yeong;Jeong, Hanna;Noh, Hyun Ho;Yu, Seung-Hwa;Song, Hosung;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.39-47
    • /
    • 2021
  • With rising concerns about pesticide spray drifts, this study analyzed the drift patterns of two typically-used nozzles, XR nozzle and AI nozzle, concerning their working pressures and wind speeds by wind tunnel experiments. AI nozzle showed low drift potential with larger droplet sizes compared to XR nozzle. Airborne and deposition drifts of XR nozzle were two times higher than those of AI nozzle under high wind speeds (≥2 m s-1). In all cases, higher working pressures decreased the droplet sizes, thereby increasing the airborne and deposition drifts. Higher wind speeds also resulted in more airborne drifts, while ground deposition was increased under lower wind speeds. These effects of working pressures and wind speeds on the airborne and deposition drifts were observed at leeward distances less than 4 m from the nozzles. However, the airborne and deposition drifts were barely affected by the working pressures and wind speeds at leeward distances more than 11 m. The measurements were fitted to regression models of the drift curve with acceptable R2 values greater than 0.8, demonstrating that further studies will be useful to settle domestic issues of spray drifts.

Mobile sand barriers for windblown sand mitigation: Effects of plane layout and included angle

  • Gao, Li;Cheng, Jian-jun;Ding, Bo-song;Lei, Jia;An, Yuan-feng;Ma, Ben-teng
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.275-290
    • /
    • 2022
  • Mobile sand barriers are a new type sand-retaining structure that can be moved and arranged according to the engineering demands of sand control. When only used for sand trapping, mobile sand barriers could be arranged in single row. For the dual purposes of sand trapping and sand stabilization, four rows of mobile sand barriers can be arranged in a staggered form. To reveal the effect of plane layout, the included angle between sand barrier direction and wind direction on the characteristics of flow fields and the sand control laws of mobile sand barriers, numerical computations and wind tunnel tests were conducted. The results showed that inflows deflected after passing through staggered arrangement sand barriers due to changes in included angle, and the sand barrier combination exerted successive wind resistance and group blocking effects. An analysis of wind resistance efficiency revealed that the effective protection length of staggered arrangement sand barriers approximately ranged from the sand barrier to 10H on the leeward side (H is sand barrier height), and that the effective protection length of single row sand barriers roughly ranged from 1H on the windward side to 20H on the leeward side. The distribution of sand deposit indicated that the sand interception increased with increasing included angle in staggered arrangement. The wind-breaking and sand-trapping effects were optimal when included angle between sand barrier direction and wind direction is 60°-90°.