• Title/Summary/Keyword: leather waste

Search Result 63, Processing Time 0.022 seconds

Development of Upcycling Fashion Design Using Automotive Waste (자동차 폐기물을 활용한 업사이클링 패션 디자인 개발)

  • GAO LI;Kim, Chahyun
    • Journal of Fashion Business
    • /
    • v.28 no.3
    • /
    • pp.34-47
    • /
    • 2024
  • This study aimed to enhance public awareness of the growing issue of automobile waste and promote environmental protection by developing visually appealing and innovative clothing designs. By leveraging successful examples of upcycled fashion design and products that could recycle automobile waste, this study proposed four garment designs utilizing various materials such as seat belts, leather seat fabrics, and airbags from automobile waste. Ultimately, two of these garments were produced as physical prototypes. Findings of this study are summarized as follows. First, the development of upcycled fashion products utilizing automotive waste opened new possibilities for sustainable fashion design. This approach demonstrates potential to meet demands of modem consumers who prioritize environmental values and social responsibility. Second, the study established an important foundation for understanding market acceptance and consumer perception of upcycled fashion products using automotive waste. As consumer awareness of environmental protection grows and demand for sustainable products increases, these upcycled products are likely to gain significant traction in the fashion industry.

Gasification and Pyrolysis Technology for the Treatment of Plastics Waste (플라스틱 폐기물의 건류 및 열분해)

  • Ghim, Young Sung
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.201-206
    • /
    • 1992
  • Annual amount of plastics waste including rubber and leather waste, generated in 1990 was about 2,600,000 tons. Amount of generation of plastics waste has rapidly increased, but fractions of recycling and incineration have gradually decreased. Recently, two-stage incinerator, consisting of gasifier and gas combustor, draws much attention in Korea. Plastics are gasified in the starved air condition in the gasifier and produced gas is fired in the combustor. Combustion of produced gas is much easier than that of solid plastics, and produces a little pollutants. Standardzation of technology and process automation are still needed, but this incineration technology is in the commercial stage. Next topic concerned with this two-stage incineration will be how to treat complex plastics waste including toxic substances generated from automobiles and household appliances. Pyrolysis, realized by indirect heating in inert atmosphere, can provide high-quality products with minimum emissions. Many plastics are easily decomposed into oil in pyrolysis conditions, which can be utilized as chemical feedstocks, or gasoline or kerosene depending on feed materials and operating conditions. This has been demonstrated in several pilot-scale tests performed in Japan, Germany, etc. Easy removal of HCl from PVC is one of the most decisive merits of pyrolysis process. But in general, further efforts should be made for the process to obtain marketability. The future of pyrolysis process depends on public concern about environmental problems and oil prices.

  • PDF

Dyeing Property of Nylon Suede Fabric Dyed with Sulphur Black Dye (흑색 황화염료에 의한 나일론 스웨이드 직물의 염색 특성 연구)

  • Lee, Minju;Lee, Jeong Hoon;Jung, Dae-Ho;Lee, Mikyung;Ko, Jae Wang;Lee, Seung Geol
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • Demands for nylon suede as an artificial leather are increasing due to its functionality and aesthetics. To achieve high value added nylon suede based on green technology, this study was carried out in order to obtain useful data for the nylon suede fabrics with eco-friendly dyeing process by a pad-steam method instead of a dip dyeing process using sulphur black dye to reduce the industrial waste of water. The dyeability of the nylon suede was investigated according to reducing temperatures, dye concentrations, and reducing agent's concentrations. Throughout the results of the CIE $L^*a^*b^*$ and Munsell values, the optimized dyeing conditions of the nylon suede using sulphur black dye are $70^{\circ}C$ of dyeing temperature, 30% o.w.f. of dye concentration, and $9g/{\ell}$ of reduction agent concentration, respectively. Furthermore washing colorfastness, light colorfastness and perspiration colorfastness were achieved in the range of 4-5 grades.

Preparation of Fine Silk Powder and It′s Application for Surface Modification (폐견사류의 미세분말화 및 표면 가공제 적용)

  • 이용우;이광길;여주홍;김종호
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • The purification, dissolution and powdering of stained waste silk obtained from weaving and dyeing process were studied for the surface modification of textile fabric and plastic materials. The whiteness of stained waste silk could be improved through degumming and bleaching with sodium hydrosulfite. The water-soluble fibroin solution can be obtained by dissoving the degummed waste silk in a boiling solution of 50% calcium chloride for 60 minutes. The salts and heavy metals contained in fibroin solution were removed by electric dialysis, wool fiber filtration and gel filtration chromatography. The fibroin powder was prepared by using a fine grinder after the alkali treatment for weakening the silk fiber. The fine fibroin powder of particle size around 30 ㎛ was obtained with a ultra fine-mill, while it was finer below 10 ㎛ with a ball-mill. The dissolved or powdered silk was applied to the surface of fabric with addition of the binder (a urethane resin). The moisture content of polyester and nylon fabrics treated with the silk solution was improved due to hygroscopic property of silk. The fine fibroin powder mixed with the binder ws coated on the surface of synthetic film by use of the air pressed sprayer. It was revealed that the hygroscopicity as well as the softness of fibroin powder coated film was much improved. Therefore, it is thought that the fine silk fibroin powder is applicable as an coating agent for the surface modification of plastic and synthetic leather.

  • PDF

A Study on the Characteristics of Material in the Korean Up-cycling Fashion Brands (Part I) (업사이클링 패션브랜드에 나타난 소재특성 연구 (제1보))

  • Lee, Dahye;Jung, Kyunghee;Bae, Soojeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.486-502
    • /
    • 2018
  • Mass-production caused by industrialization has led to environmental pollution; however, a potential solution to this problem is the Up-cycling fashion design belonging to the sustainable design category. This study analyzed the material characteristics of each brand fashion product by selecting 21 domestic Up-cycling fashion brands. The product types manufactured by domestic Up-cycling fashion brands could be divided into fashion clothing, bag, and fashion accessories. The materials used for each item included special material, waste fiber, waste leather, waste paper, and others. In the results of analyzing the material characteristics into the external characteristics and internal characteristics, the external characteristics included the durability with less abrasiveness and deformation as well as a mixture with other different materials, while the internal characteristics included a story arousing consumers' empathy, and scarcity without the same design due to the limitation of material.

A Study on the Noxious Materials in the Waste Shipped into Solid Recovered Fuel(SRF) Facilities and Their Influence (고형연료(SRF)시설로 반입되는 폐기물의 영향 및 유해성물질 등에 관한 연구)

  • Lee, Seung-Won;Kim, Sang-Hun;Lee, Sang-Seok;Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2018
  • This study carried out first a component survey on the domestic waste shipped into a waste disposal facility in B city, and then heavy metal analysis of each component according to the SRF standards. Based on this, this study explored the problems with domestic waste and measures to improve them. The results are as follows. The result of the survey of physical components show that paper accounted for the largest proportion with 20.5 %~59.9 %, metals (including batteries) among incombustibles accounted for 0.0~8.3 %, other inorganic substances, glass and ceramics accounted for 0.0~43.7 % and 0.0 %~19.6 % respectively. However, the proportion of coated viny and plastics, which have high lead and cadmium content, was rather high with 2.9 %~30.9 %. This suggests the possibility that actual concentration of lead and cadmium within SRF is likely to be higher. Among the 15 components contained in the waste brought into the waste disposal facility, 10 components (food waste, textiles, vinyl, plastics, wood, rubber and leather, paper, metals, electronic substrates, and nail polish) were analyzed according to assay samples (approximately 0.1 g and 0.3 g). The result of analysis shows that the amount of Cd and Pb detected in coated vinyl for 0.109 g of assay sample was 98.6 mg/kg and 20.6 mg/kg respectively; 117.0 mg/kg and 29.0 mg/kg respectively for 0.313 g of assay sample. This is high contents exceeding the Cd standard. As for wooden component, the amount of Pb was 480.0 mg/kg for 0.3 g of assay sample. This suggests that there always exists the possibility of exceeding the exposure level of heavy metals (Cd and Pb) in SRF as long as coated wood and vinyl plastics with high contents of Pb and Cd are shipped into the waste disposal facility; and the local government and the residents need to work hard to improve the situation including development of the machine to sort electronic substrates and batteries for separate collection of the waste of coated vinyl and plastics within domestic waste.

Layout of Garment Patterns for Efficient Fabric Consumption

  • Madarasmi, Suthep;Sirivarothakul, Phoomsith
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1176-1179
    • /
    • 2002
  • This paper presents the use of a Genetic Algorithm to find the optimal layout for the placement of garment patterns on a fabric of fixed width to minimize fabric waste. We developed a program to simulate garment pieces and their layout on a fixed-width fabric. Each piece in the order book is placed with 2 possible orientations: 0 degrees and 180 degrees. The efficiency is measured by the length of fabric used after all the patterns in the order book have been laid out. A comparison is made between the placement using our proposed genetic algorithm to that made by an expert human using our simulation program. The results from our experiments on various pattern designs indicate that our genetic algorithm can effectively be used to obtain highly efficient solutions, comparable to that done by an expert while using a reasonable amount of time. The algorithm can also be adapted for use in other areas related to optimal consumption of sheet material such as metal, paper, and leather.

  • PDF

Utilization of Industrial Wastes for Organic Fertilizer Use (유기질비료(有機質肥料) 자원(資源)으로서의 산업폐기물(産業廢棄物))

  • Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.3
    • /
    • pp.195-206
    • /
    • 1979
  • Where the industrial waste is increasing in number of kind and in quantities by the industrialization and population increases, the pollution problem is not only national but grobal question of the day. This paper is trying to invite attentions by the people who are working in both sector-natural sciences and industries in reviewing limited reports and materials. 1. By the chemical evaluation of over 20 industrial waste produced in Korea, potential wastes for commercial fertilizer would be wastes from alcohol fermantation, beer brewery, leather processing, synthetic fiber, and coffee grounds. 2. The composition of city waste is differ from other countries and sludge cake from human feces processing is promising one in the organic matter and phosphate content particularly. However, the content of heavy matals, specific order, and availability of phosphate are the bottle-neck for the development. 3. There is one commercial fertilizer from industrial waste in the market. It is very reasonable in the content of nitrogen and organic matter, and its formulation and responeses on crops. 4. Discussions were also given on the general problems in processing and marketing of fertilizers from industrial waste, however, scientists and industrial owners have to pay more attention on the development of fertilizers from tire industrial wastes because of vital environmental protection view-point.

  • PDF

Isolation and Identification of Feather-Degrading Bacteria for Biotechnological Applications of Keratinaceous Protein Waste (케라틴 단백질 폐기물의 생물공학적 적용을 위한 우모 분해세균의 분리 및 동정)

  • 손홍주;김용균;박연규
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.229-234
    • /
    • 2004
  • Feathers, which are almost pure keratin protein, are produced in large amounts as a waste by-product at poultry-processing plants. Keratinolytic enzymes may have important uses in biotechnological processes involving keratin-containing wastes from poultry and leather processes. In this study, screening and identification of keratin-degrading bacteria were investigated. Five keratin-degrading bacterial strains (F3-1, F3-4, F7-1, C1-1, C1-2) were isolated from compost and decayed chicken feather. On the basis of morphological, physiological studies, and Biolog system, all isolates were identified as the genus Bacillus. Among them, the strain F7-1 had the highest feather-degrading activity and was selected for further taxonomical study. Phylogenetic analysis of strain F7-1 based on comparison of 165 rDNA sequences revealed that this strain is closely related to Bacillus megaterium.

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.