• 제목/요약/키워드: least-squares problem

검색결과 347건 처리시간 0.029초

2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석 (NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD)

  • 정세민;박종천;허재경
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.93-100
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved successively in the moving least square sense. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as a FVM.

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.

다중 선형 모형에서 식별된 다중 이상점과 다중 지렛점의 재확인 방법에 대한 연구 (A Confirmation of Identified Multiple Outliers and Leverage Points in Linear Model)

  • 유종영;안기수
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.269-279
    • /
    • 2002
  • 다중 이상점 과 다중 지렛점의 식별은 가장효과(masking effect)와 편승효과(swamping effect)에 영향을 받으므로 어려움이 존재한다. Rousseeuw와 van Zomeren(1990)은 LMS (Least Median of Squares) 회귀방법과 MVE(Minimum Volume Ellipsoid) 통계량을 이용하여 다중 이상점과 다중 지렛점을 식별하였다. 그러나 이들의 방법은 LMS와 MVE의 강한 로버스트성으로 인하여 이상점과 지렛점이 아닌 점들도 이상점과 지렛점으로 식별하는 경향이 있다. Fung(1993)은 식별된 이상점과 지렛점들에 대하여 재확인방법을 제안하였는데 이 방법은 인근효과(adjacent effect)에 영향을 받아 이상점과 지렛점을 식별하는데 문제가 있는 것으로 분석되었다. 본 논문은 이러한 문제점을 지적하고 새로운 방법을 제안하여 식별된 이상점과 지렛점을 재확인하고자 한다.

Time-varying physical parameter identification of shear type structures based on discrete wavelet transform

  • Wang, Chao;Ren, Wei-Xin;Wang, Zuo-Cai;Zhu, Hong-Ping
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.831-845
    • /
    • 2014
  • This paper proposed a discrete wavelet transform based method for time-varying physical parameter identification of shear type structures. The time-varying physical parameters are dispersed and expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular least-squares methods, and then the original time-varying physical parameters can be reconstructed by using the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping is sensitive to noise.

Substructure based structural damage detection with limited input and output measurements

  • Lei, Y.;Liu, C.;Jiang, Y.Q.;Mao, Y.K.
    • Smart Structures and Systems
    • /
    • 제12권6호
    • /
    • pp.619-640
    • /
    • 2013
  • It is highly desirable to explore efficient algorithms for detecting structural damage of large size structural systems with limited input and output measurements. In this paper, a new structural damage detection algorithm based on substructure approach is proposed for large size structural systems with limited input and output measurements. Inter-connection effect between adjacent substructures is treated as 'additional unknown inputs' to substructures. Extended state vector of each substructure and its unknown excitations are estimated by sequential extended Kalman estimator and least-squares estimation, respectively. It is shown that the 'additional unknown inputs' can be estimated by the algorithm without the measurements on the substructure interface DOFs, which is superior to previous substructural identification approaches. Also, structural parameters and unknown excitation are estimated in a sequential manner, which simplifies the identification problem compared with other existing work. Structural damage can be detected from the degradation of the identified substructural element stiffness values. The performances of the proposed algorithm are demonstrated by several numerical examples and a lab experiment. Measurement noise effect is considered. Both the simulation results and experimental data validate that the proposed algorithm is viable for structural damage detection of large size structural systems with limited input and output measurements.

Spatio-temporal protocol for power-efficient acquisition wireless sensors based SHM

  • Bogdanovic, Nikola;Ampeliotis, Dimitris;Berberidis, Kostas;Casciat, Fabio;Plata-Chaves, Jorge
    • Smart Structures and Systems
    • /
    • 제14권1호
    • /
    • pp.1-16
    • /
    • 2014
  • In this work, we address the so-called sensor reachback problem for Wireless Sensor Networks, which consists in collecting the measurements acquired by a large number of sensor nodes into a sink node which has major computational and power capabilities. Focused on applications such as Structural Health Monitoring, we propose a cooperative communication protocol that exploits the spatio-temporal correlations of the sensor measurements in order to save energy when transmitting the information to the sink node in a non-stationary environment. In addition to cooperative communications, the protocol is based on two well-studied adaptive filtering techniques, Least Mean Squares and Recursive Least Squares, which trade off computational complexity and reduction in the number of transmissions to the sink node. Finally, experiments with real acceleration measurements, obtained from the Canton Tower in China, are included to show the effectiveness of the proposed method.

로버스트주성분회귀에서 최적의 주성분선정을 위한 기준 (A Criterion for the Selection of Principal Components in the Robust Principal Component Regression)

  • 김부용
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.761-770
    • /
    • 2011
  • 회귀모형에 연관성이 높은 설명변수들이 포함되면 다중공선성의 문제가 야기되며, 동시에 자료에 회귀 이상점들이 포함되면 최소자승추정량에 바탕을 둔 제반 통계적 추론은 심각한 결함을 갖게 된다. 이러한 현상들은 데이터마이닝 분야에서 많이 볼 수 있는데, 본 논문에서는 두 가지 문제를 동시에 해결하기 위한 방안으로서 로버스트주성분회귀를 제안하였다. 특히 최적의 주성분을 선정하기 위한 새로운 기준을 개발하였는데, 설명변수들의 표본공분산 대신에 MVE-추정량을 기반으로 하였으며, 고유치가 아니라 상태지수의 크기에 바탕을 둔 선정기준을 제안하였다. 그리고 주성분모형에서의 추정을 위하여 회귀이상점에 대해 로버스트한 LTS-추정을 도입하였다. 제안된 선정기준이 기존의 기준들보다 다중공선성과 이상점이 유발하는 문제들을 잘 해결할 수 있음을 모의실험을 통하여 확인하였다.

A LOCALIZED GLOBAL DEFORMATION MODEL TO TRACK MYOCARDIAL MOTION USING ECHOCARDIOGRAPHY

  • Ahn, Chi Young
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권2호
    • /
    • pp.181-192
    • /
    • 2014
  • In this paper, we propose a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frame from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropout or shadowing phenomena of cardiac walls. The proposed method deals with this shape distortion problem and reflects the motion realistic LV shape by applying global deformation modeled as affine transform partitively to the contour. We partition the tracking points on the contour into a few groups and determine each affine transform governing the motion of the partitioned contour points. To compute the coefficients of each affine transform, we use the least squares method with equality constraints that are given by the relationship between the coefficients and a few contour points showing good tracking results. Many real experiments show that the proposed method supports better performance than existing methods.

Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach

  • Mirzaei, Zeinab;Akbarpour, Abolfazl;Khatibinia, Mohsen;Siuki, Abbas Khashei
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.709-727
    • /
    • 2015
  • The main aim of this study is to introduce optimal design of homogeneous earth dams with oblique and horizontal drains based on particle swarm optimization (PSO) incorporating weighted least squares support vector machine (WLS-SVM). To achieve this purpose, the upstream and downstream slopes of earth dam, the length of oblique and horizontal drains and angle among the drains are considered as the design variables in the optimization problem of homogeneous earth dams. Furthermore, the seepage through dam body and the weight of dam as objective functions are minimized in the optimization process simultaneously. In the optimization procedure, the stability coefficient of the upstream and downstream slopes and the seepage through dam body as the hydraulic responses of homogeneous earth dam are required. Hence, the hydraulic responses are predicted using WLS-SVM approach. The optimal results of illustrative examples demonstrate the efficiency and computational advantages of PSO with WLS-SVM in the optimal design of homogeneous earth dams with drains.

대학수학 경사하강법(gradient descent method) 교수·학습자료 개발 (A Study on the Development of Teaching-Learning Materials for Gradient Descent Method in College AI Mathematics Classes)

  • 이상구;남윤;이재화
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권3호
    • /
    • pp.467-482
    • /
    • 2023
  • 본 논문에서는 인공지능 알고리즘에서 많이 사용되는 경사하강법(gradient descent method)을 대학수학 강좌에서 인공지능 활용사례로 사용할 수 있도록 연구한 교수·학습 기초자료를 소개한다. 특히 대학 미적분학 수준에서도 가르칠 수 있도록 자세한 개념 설명과 함께 복잡한 함수에 관해서도 쉽게 계산할 수 있도록 파이썬(Python) 기반의 SageMath 코드를 제공한다. 그리고 실제 인공지능 응용과 연계하여 선형회귀에서 발생하는 최소제곱문제를 경사하강법을 활용하여 풀이한 예시도 함께 소개한다. 본 연구는 대학 미적분학 뿐만 아니라 공학수학, 수치해석, 응용수학 등과 같은 고급 수학 과목을 지도하는 다양한 교수자들에게 도움이 될 수 있다.