• Title/Summary/Keyword: least-square training

Search Result 72, Processing Time 0.025 seconds

A T-S Fuzzy Identification of Interior Permanent Magnet Synchronous (매입형 영구자석 동기전동기의 T-S 퍼지 모델링)

  • Wang, Fa-Guang;Kim, Min-Chan;Kim, Hyun-Woo;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • Control of interior permanent magnet (IPMSM) is difficult because its nonlinearity and parameter uncertainty. In this paper, a fuzzy c-regression models clustering algorithm which is based on T-S fuzzy is used to model IPMSM with a series linear model and weight them by memberships. Lagrangian of constrained function is built for calculating clustering centers where training output data are considered. Based on these clustering centers, least square method is applied for T-S fuzzy linear model parameters. As a result, IPMSM can be modeled as T-S fuzzy model for T-S fuzzy control of them.

Collapse moment estimation for wall-thinned pipe bends and elbows using deep fuzzy neural networks

  • Yun, So Hun;Koo, Young Do;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2678-2685
    • /
    • 2020
  • The pipe bends and elbows in nuclear power plants (NPPs) are vulnerable to degradation mechanisms and can cause wall-thinning defects. As it is difficult to detect both the defects generated inside the wall-thinned pipes and the preliminary signs, the wall-thinning defects should be accurately estimated to maintain the integrity of NPPs. This paper proposes a deep fuzzy neural network (DFNN) method and estimates the collapse moment of wall-thinned pipe bends and elbows. The proposed model has a simplified structure in which the fuzzy neural network module is repeatedly connected, and it is optimized using the least squares method and genetic algorithm. Numerical data obtained through simulations on the pipe bends and elbows with extrados, intrados, and crown defects were applied to the DFNN model to estimate the collapse moment. The acquired databases were divided into training, optimization, and test datasets and used to train and verify the estimation model. Consequently, the relative root mean square (RMS) errors of the estimated collapse moment at all the defect locations were within 0.25% for the test data. Such a low RMS error indicates that the DFNN model is accurate in estimating the collapse moment for wall-thinned pipe bends and elbows.

Fuzzy inference system and Its Optimization according to partition of Fuzzy input space (퍼지 입력 공간 분할애 따른 퍼지 추론과 이의 최적화)

  • Park, Byoung-Jun;Yoon, Ki-Chan;Oh, Sung-Kwun;Jang, Seong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.657-659
    • /
    • 1998
  • In order to optimize fuzzy modeling of nonlinear system, we proposed a optimal fuzzy model according to the characteristic of I/O relationship, HCM method, the genetic algorithm, and the objective function with weighting factor. A conventional fuzzy model has difficulty in definition of membership function. In order to solve its problem, the premise structure of the proposed fuzzy model is selected by both the partition of input space and the analysis of input-output relationship using the clustering algorithm. The premise parameters of the fuzzy model are optimized respectively by the genetic algorithm and the consequence parameters of the fuzzy model are identified by the standard least square method. Also, the objective function with weighting factor is proposed to achieve a balance between the performance results for the training and testing data.

  • PDF

The Design of Target Tracking System Using the Identification of TS Fuzzy Model (TS 퍼지 모델 동정을 이용한 표적 추적 시스템 설계)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1958-1960
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using the identification of TS fuzzy model based on genetic algorithm(GA) and RLS algorithm. In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter(EKF), the performance of the system may be deteriorated in highly nonlinear situation. In this paper, to resolve these problems of nonlinear filtering technique, the error of EKF by nonlinearity is compensated by identifying TS fuzzy model. In the proposed method, after composing training datum from the parameters of EKF, by identifying the premise and consequent parameters and the rule numbers of TS fuzzy model using GA, and by tuning finely the consequent parameters of TS fuzzy model using recursive least square(RLS) algorithm, the error of EKF is compensated. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

Evaluation of Larynx Cancer via Chemometrics Assisted Raman Spectroscopy

  • Senol, Onur;Albayrak, Mevlut
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.150-153
    • /
    • 2019
  • Larynx cancer is a potentially terminal and severe type of neck and head cancer in which malignant cells start to grow and spread upwards in the larynx, or voice box. Smoking tobacco, drinking hot beverages and drinking alcohol are the main risk factors for these tumors. In this study, we aimed to develop a precise, accurate and rapid chemometrics assisted Raman spectroscopy method for diagnosis of larynx cancer in deparaffinized tissue samples. In the proposed method, samples were deparaffinized and 20 microns of each tissue were located on a coverslip. Both healthy (n = 13) and cancerous tissues (n = 13) were exposed to a Raman laser (785 nm) and excitations were recorded between wavenumbers of $50{\sim}1500cm^{-1}$. An Orthogonal Partial Least Square algorithm was applied to evaluate the Raman spectrum obtained. Sensitivity and specificity of the proposed method is high enough with the aid of Principal Component Analysis (PCA) to test the whole model. Healthy and cancerous tissues were accurately and precisely clustered. A rapid, easy and precise diagnosis algorithm was developed for larynx cancer. By this method, some useful data about differences in biomolecules of each group (phospholipids, amides, tyrosine, phenylalanine collagen etc.) was also obtained from the spectra. It is claimed that the optimized method has a great potential for clustering and separating tumor tissues from healthy ones. This novel, rapid, precise and objective diagnosis method may be an alternative for the conventional methods in literature for diagnosis of larynx cancer.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

A Study on the performance improvement by loop interference cancellation and adaptive equalizer in OFDMA based Wibro relay station (OFDMA 기반 Wibro 중계국에서 루프 간섭 제거 및 적응 등화기를 이용한 성능 개선에 관한 연구)

  • Lee, Chong-Hyun;Lim, Seung-Gag
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.141-148
    • /
    • 2006
  • This paper deals with the performance improvement by eliminating loop interference signal and inserting adaptive equalizer for phase compensation in OFDMA based Wibro relay station. The Wibro relay station is used for the extension of communication service area and for throughput improvement of base station. The loop interference is important factor of performance determination of relay station when transmitter and receiver is very closely located. In order to design interference canceller, we generated base-band OFDMA signal and then transmitted the signal along with pilot tones alined with two different combinations for training mode. And then, we generated received fading signal due to the loop interference added noise to the received signal. In the receiver, the transmitted signal is recovered by elimination of the interference signal with channel estimate and compensating phase by adaptive equalizer. The performance improvement was verified by computer simulation which show channel estimation, constellation of signal and BER characteristics according to the variation of SNR ratio.

Development of Flash Boiling Spray Prediction Model of Multi-hole GDI Injector Using Machine Learning (머신러닝을 이용한 다공형 GDI 인젝터의 플래시 보일링 분무 예측 모델 개발)

  • Chang, Mengzhao;Shin, Dalho;Pham, Quangkhai;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.

Secure Training Support Vector Machine with Partial Sensitive Part

  • Park, Saerom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, we propose a training algorithm of support vector machine (SVM) with a sensitive variable. Although machine learning models enable automatic decision making in the real world applications, regulations prohibit sensitive information from being used to protect privacy. In particular, the privacy protection of the legally protected attributes such as race, gender, and disability is compulsory. We present an efficient least square SVM (LSSVM) training algorithm using a fully homomorphic encryption (FHE) to protect a partial sensitive attribute. Our framework posits that data owner has both non-sensitive attributes and a sensitive attribute while machine learning service provider (MLSP) can get non-sensitive attributes and an encrypted sensitive attribute. As a result, data owner can obtain the encrypted model parameters without exposing their sensitive information to MLSP. In the inference phase, both non-sensitive attributes and a sensitive attribute are encrypted, and all computations should be conducted on encrypted domain. Through the experiments on real data, we identify that our proposed method enables to implement privacy-preserving sensitive LSSVM with FHE that has comparable performance with the original LSSVM algorithm. In addition, we demonstrate that the efficient sensitive LSSVM with FHE significantly improves the computational cost with a small degradation of performance.

Performance evaluation of Edge-based Method for classification of Gelatin Capsules (젤라틴 캡슐의 분류를 위한 에지 기반 방법 성능 평가)

  • Kwon, Ki-Hyeon;Choi, In-Soo
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.159-165
    • /
    • 2017
  • In order to solve problems in automatic quality inspection of tablet capsules, computation-efficient image processing technique, appropriate threshold setting, edge detection and segmentation methods are required. And since existing automatic system for quality inspection of tablet capsules is of very high cost, it needs to be reduced through the realization of low-price hardware system. This study suggests a technique that uses low-cost camera module to obtain image and inspects dents on tablet capsules and sorting them by applying TLS curve fitting technique and edge-based image segmentation. In order to assess the performance, the major classifications algorithm of PCA, ICA and SVM are used to evaluate training time, test time and accuracy for capsule image area and curve fitting edge data sets.