The Bass model is a cornerstone in diffusion theory which is used for forecasting demand of durables or new services. Three well-known estimation methods for parameters of the Bass model are Ordinary Least Square (OLS), Maximum Likelihood Estimator (MLE), Nonlinear Least Square (NLS). In this paper, a hybrid method incorporating OLS and NLS is presented and it's performance is analyzed and compared with OLS and NLS by using simulation data and empirical data. The results show that NLS has the best performance in terms of accuracy and our hybrid method has the best performance in terms of stability. Specifically, hybrid method has better performance with less data. This result means much in practical aspect because the avaliable data is little when a diffusion model is used for forecasting demand of a new product.
The Journal of Asian Finance, Economics and Business
/
제6권4호
/
pp.27-35
/
2019
The paper examines the level of disclosure on Islamic banks' performance in the United Arab Emirates (UAE). The data was collected through content analysis of annual reports and financial statements of all fully-fledged Islamic banks working in the UAE over the period 2009 to 2013. Return on Assets is used as a proxy for the performance of Islamic banks while disclosure index is used as a proxy for Islamic banks' disclosure. Also, predetermined variables are used in the study like Size, Deposits, Non-Performing Investments and Capital to Risk Weighted Assets Ratio. Two-Stage Least-Square regression method is used to check the interdependence relationships between disclosure and performance of Islamic banks in the UAE. The results show a significant relationship between performance and disclosure in the UAE Islamic banks. Our regression results show that Islamic banks with higher levels of disclosure lead to higher operating performance. Furthermore, the performance has a great impact on the level of disclosure which means Islamic banks with high performance measures will disclose more information for investors and other institutions in order to reduce the cost of equity and increase their values in the market. This study is considered as a battery for further studies in the relationship between disclosure and financial performance of Islamic banks at a global level.
The tropical forests in developing countries are faced with the problem of illegal exploitation of trees. However, dearth of empirical means of expressing the dimensions, structure, quality and quantity of a removed tree has imped conviction of offenders. This study aimed at developing a model that can effectively estimate individual tree basal area (BA) from stump diameter (Ds) for Tectona grandis stands in Omo Forest Reserve, Nigeria, for timber valuation in case of illegal felling. Thirty-six $25m{\times}25m$ temporary sample plots (TSPs) were laid randomly in six age strata; 26, 23, 22, 16, 14, and 12 years specifically. BA, Ds and diameter at breast height were measured in all living T. grandis trees within the 36 TSPs. Least square method was used to convert the counted stumps into harvested stem cross-sectional areas. Six basal area models were fitted and evaluated. The BA-Ds relationship was best described by power model which gave least values of Root mean square error (0.0048), prediction error sum of squares (0.0325) and Akaike information criterion (-15391) with a high adjusted coefficient of determination (0.921). This study revealed that basal area estimation was realistic even when the only information available was stump diameter. The power model was validated using independent data obtained from additional plots and was found to be appropriate for estimating the basal area of Tectona grandis stands in Omo Forest Reserve, Nigeria.
본 논문에서는 적응 제어 문제를 다루기 위해 CFCM 클러스터링과 퍼지 균등화 기법을 이용하여 새로운 적응 뉴로-퍼지 제어기를 설계하고자 한다. 먼저 오프라인에서 CFCM은 입력데이터의 성질과 출력 패턴의 성질까지도 고려한 퍼지 클러스터링 기법으로 적응 뉴로-퍼지 제어기의 구조동정을 수행한다. 파라미터 동정은 역전과 알고리즘과 RLSE(Recursive Least Square Estimate)을 이용한 하이브리드 학습을 수행한다. 온라인 학습에서는 시변특성으로 인해 전제부 및 결론부 파라미터를 실시간으로 계산된다. 시뮬레이션으로 온 라인 적응 뉴로-퍼지 제어 시스템의 성능을 입증하기 위해 목욕물 온도제어 시스템에 대해 다루고 전형적인 퍼지 제어기에 비해 오프 라인과 온 라인 설계 모두 좋은 성능을 보이고자 한다.
In this paper, Capacitive Telemetry RF Sensor System using Recursive Least Square (RLS) algorithm was proposed. General Telemetry RF Sensor System means that it should be "wireless", "implantable" and "batterless". Conventional Telemetry RF Sensor System adopts Integrated Circuit type, but there are many defects like complexity of structure and the limitation of large power consumption in some cases. In order to overcome these disadvantages, Telemetry RF Sensor System based on inductive coupling principle was proposed in this paper. Proposed Telemetry RF Sensor System is very simple because it consists of R, L and C and measures the changes of environment like pressure and humidity in the type of capacitive value. This system adopted RLS algorithm for estimation of this capacitive parameter. For the purpose of applying RLS algorithm, proposed system was mathematically modelled with phasor method and was quasi-linearized. As two parameters such as phase and amplitude of output voltage for estimation were needed, Phase Difference Detector and Amplitude Detector were proposed respectively which were implemented using TMS320C2812 made by Texas Instrument. Finally, It is verified that the capacitance of proposed telemetry RF Sensor System using RLS algorithm can be estimated efficiently under noisy environment.
This paper presents a least-square algorithms of lattice structures and their use for adaptive prediction of time series generated from the dynamic system. As the view point of adaptive prediction, a new method of Identification of dynamic characteristics by means of estimating the parameters of linear auto regressive model is proposed. The fast convergence of adaptive lattice algorithms is seen to be due to the orthogonalization and decoupling properties of the lattice. The superiority of the least-square lattice is verified by computer simulation, then predictor coefficients are computed from the linear sequential time data. For the application to the dynamic characteristic analysis of unknown system, the transfer function of ideal system represented in frquency domain and the estimated one obtained by predicted coefficients are compared. Using the proposed method, the damping ratio and the natural frequency of a dynamic structure subjected to random excitations can be estimated. It is expected that this method will be widely applicable to other technical dynamic problem in which estimation of damping ratio and fundamental vibration modes are required.
In this study, we introduce a identification methodology for FCM-based fuzzy model. The two underlying design mechanisms of such networks involve Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on FCM clustering method for efficient processing of data and the optimization of model was carried out using PSO. The premise part of fuzzy rules does not construct as any fixed membership functions such as triangular, gaussian, ellipsoidal because we build up the premise part of fuzzy rules using FCM. As a result, the proposed model can lead to the compact architecture of network. In this study, as the consequence part of fuzzy rules, we are able to use four types of polynomials such as simplified, linear, quadratic, modified quadratic. In addition, a Weighted Least Square Estimation to estimate the coefficients of polynomials, which are the consequent parts of fuzzy model, can decouple each fuzzy rule from the other fuzzy rules. Therefore, a local learning capability and an interpretability of the proposed fuzzy model are improved. Also, the parameters of the proposed fuzzy model such as a fuzzification coefficient of FCM clustering, the number of clusters of FCM clustering, and the polynomial type of the consequent part of fuzzy rules are adjusted using PSO. The proposed model is illustrated with the use of Automobile Miles per Gallon(MPG) and Boston housing called Machine Learning dataset. A comparative analysis reveals that the proposed FCM-based fuzzy model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.
We introduce a hybrid identification of information granulation(IG)-based fuzzy model to carry out the model identification of complex and nonlinear systems. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of HCM clustering help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the GAs and the least square method. Numerical example is included to evaluate the performance of the proposed model.
제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
/
pp.200-205
/
1993
A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type 1), linear inference (type 2), and modified linear inference (type 3). The fuzzy c-means clustering and modified complex methods are used in order to identify the preise structure and parameter of fuzzy implication rules, respectively and the least square method is utilized for the identification of optimal consequence parameters. Time series data for gas funace and sewage treatment processes are used to evaluate the performances of the proposed rule-based fuzzy modeling.
본 논문에서는 최적화 알고리즘인 유전자 알고리즘과 context-based FCM 클러스터링 방법을 이용하여 새로운 형태의 RBF 뉴럴 네트워크의 포괄적인 설계 방법론을 소개한다. 제안된 구조는 클러스터링 기법을 기반하여 사용된 데이터의 특성에 효과적인 모델을 구축하고자 한다. 또한 유전자 알고리즘을 이용하여 모델의 최적화에 주요한 영향을 미치는 파리미터들(-은닉층에서의 contex의 수, contex에 포괄되는 노드의 수, 그리고 contex에 입력되는 입력변수)을 동조한다. 제안된 모델의 설계 공정은 1) K-means 클러스터링을 통한 context fuzzy set에 대한 정의와 설계, 2) context-based fuzzy clustering에 대한 모델의 적용과 이에 따른 모델 구축의 효율성, 3) 유전자 알고리즘을 통한 모델 최적화를 위한 파라미터들의 최적화와 같은 단계로 구성되어 있다. 구축된 RBF 뉴럴 네트워크의 후반부 다항식에 대한 parameter들은 성능지수를 최소화하기 위해 Least Square Method에 의해서 보정된다. 본 논문에서는 모델을 설계함에 있어서 체계적인 설계 알고리즘을 포괄적으로 설명하고 있으며, 더 나아가 제안된 모델의 성능을 다른 표준적인 모델들과 대조함으로써 제안된 모델의 우수성을 나타내고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.