• Title/Summary/Keyword: learning through failure

Search Result 136, Processing Time 0.026 seconds

A Prediction Scheme for Power Apparatus using Artificial Neural Networks (인공신경망을 이용한 수전설비 고장 예측 방법)

  • Ki, Tae-Seok;Lee, Sang-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • Failure of the power apparatus causes many inconveniences and problems due to power outage in all places using power such as industry and home. The main causes of faults in the Power Apparatus are aging, natural disasters such as typhoons and earthquakes, and animals. At present, the long high temperature status is monitored only by the assumption that a fault occurs when the temperature of the power apparatus becomes higher. Therefore, it is difficult to cope with the failure of the power apparatus at the right time. In this paper, we propose a power apparatus monitoring system as an efficient countermeasure against general faults except for faults caused by sudden natural disasters. The proposed monitoring system monitors the power apparatus in real time by attaching a thermal sensor, collects the monitored data, and predicts the failure using the accumulated information through learning using the artificial neural network. Through the learning and experimentation of artificial neural network, it is shown that the proposed method is efficient.

The Camparative study of NHPP Extreme Value Distribution Software Reliability Model from the Perspective of Learning Effects (NHPP 극값 분포 소프트웨어 신뢰모형에 대한 학습효과 기법 비교 연구)

  • Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this study, software products developed in the course of testing, software managers in the process of testing software test and test tools for effective learning effects perspective has been studied using the NHPP software. The finite failure non-homogeneous Poisson process models presented and the life distribution applied extreme distribution which used to find the minimum (or the maximum) of a number of samples of various distributions. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than automatic error that is generally efficient model could be confirmed. This paper, a numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error.

Machine Learning Model for Reduction Deformation of Plastic Motor Housing for Automobiles

  • Seong-Yeol Han
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2024
  • The purpose of this paper is to introduce a fusion method that combines the design of experiments (DOE) and machine learning to optimize the bias of plastic products. The study focuses on the plastic motor housing used in automobiles, which is manufactured through plastic injection molding. Achieving optimal molding for the motor housing involves the optimization of various molding conditions, including injection pressure, injection time, holding pressure, mold temperature, and cooling time. Failure to optimize these conditions can lead to increased product deformation. To minimize the deformation of the motor housing, the widely used Taguchi method, which is one of the design of experiment techniques, was employed to identify the injection molding conditions that affect deformation. Machine learning was then applied to various models based on the identified molding conditions. Among the models, the Random Forest model emerged as the most effective in predicting deformation amounts. The validity of the Random Forest model was also confirmed through verification. The verification results demonstrated the excellent prediction accuracy of the trained Random Forest model. By utilizing the validated model, molding conditions that minimize deformation were determined. Implementation of these optimal molding conditions led to a reduction of approximately 5.3% in deformation compared to the conditions before optimization. It is noteworthy that all injection molding outcomes presented in this paper were obtained through robust injection molding simulations, ensuring both research objectivity and speed.

The Effect of Crisis Management System on Crisis Preparedness -Focusing on Multi-Mediating Effect of Crisis Monitoring and Learning from Failure- (기업의 위기관리체계가 위기대비에 미치는 영향 -실패경험 학습과 위기모니터링의 다중매개 효과를 중심으로-)

  • Kweon, Dae-Weon;Choi, Su-Heyong;Kang, Hee-Kyung
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.169-184
    • /
    • 2022
  • The purpose of this study is to give a help organizations facing various crises establish effective crisis preparedness plans by confirming the effect of an organization's crisis management system on crisis preparedness, and by confirming the multiple mediating effects of crisis monitoring and learning from failure. The survey for the empirical study was conducted targeting 121 executives, directors, mangers and mid-level employees of the MBA program of the P National University. Confirmatory factor analysis, reliability analysis, and regression analysis were performed using SPSS 25 and Amos 25, and mediating effect analysis was performed using the boot-strapping technique using process macro. As a result of the study, it was found that the crisis management system had a positive (+) effect on crisis preparedness, and learning from failure and crisis monitoring multi-mediate between the crisis management system and crisis preparedness. Through the research results, it was confirmed that there was a significant effect of learning from failure and crisis monitoring that had an effect on crisis preparedness. As an implication, a crisis preparedness plan suitable for the organizational situation was presented, and the limitations of the study and future research directions were presented.

A Comparative Study on the Methodology of Failure Detection of Reefer Containers Using PCA and Feature Importance (PCA 및 변수 중요도를 활용한 냉동컨테이너 고장 탐지 방법론 비교 연구)

  • Lee, Seunghyun;Park, Sungho;Lee, Seungjae;Lee, Huiwon;Yu, Sungyeol;Lee, Kangbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • This study analyzed the actual frozen container operation data of Starcool provided by H Shipping. Through interviews with H's field experts, only Critical and Fatal Alarms among the four failure alarms were defined as failures, and it was confirmed that using all variables due to the nature of frozen containers resulted in cost inefficiency. Therefore, this study proposes a method for detecting failure of frozen containers through characteristic importance and PCA techniques. To improve the performance of the model, we select variables based on feature importance through tree series models such as XGBoost and LGBoost, and use PCA to reduce the dimension of the entire variables for each model. The boosting-based XGBoost and LGBoost techniques showed that the results of the model proposed in this study improved the reproduction rate by 0.36 and 0.39 respectively compared to the results of supervised learning using all 62 variables.

Anomaly Diagnosis of Rotational Machinery Using Time-Series Vibration Data Based on Time-Distributed CNN-LSTM (시분할 CNN-LSTM 기반의 시계열 진동 데이터를 이용한 회전체 기계 설비의 이상 진단)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1547-1556
    • /
    • 2022
  • As mechanical facilities are interacting with each other, the failure of some equipment can affect the entire system, so it is necessary to quickly detect and diagnose the abnormality of mechanical equipment. This study proposes a deep learning model that can effectively diagnose abnormalities in rotating machinery and equipment. CNN is widely used for feature extraction and LSTMs are known to be effective in learning sequential information. In LSTM, the number of parameters and learning time increase as the length of input data increases. In this study, we propose a method of segmenting an input segment signal into shorter-length sub-segment signals, sequentially inputting them to CNN through a time-distributed method for extracting features, and inputting them into LSTM. A failure diagnosis test was performed using the vibration data collected from the motor for ventilation equipment installed at the urban railway station. The experiment showed an accuracy of 99.784% in fault diagnosis. It shows that the proposed method is effective in the fault diagnosis of rotating machinery and equipment.

A Study on the Classification of Fault Motors using Sound Data (소리 데이터를 이용한 불량 모터 분류에 관한 연구)

  • Il-Sik, Chang;Gooman, Park
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.885-896
    • /
    • 2022
  • Motor failure in manufacturing plays an important role in future A/S and reliability. Motor failure is detected by measuring sound, current, and vibration. For the data used in this paper, the sound of the car's side mirror motor gear box was used. Motor sound consists of three classes. Sound data is input to the network model through a conversion process through MelSpectrogram. In this paper, various methods were applied, such as data augmentation to improve the performance of classifying fault motors and various methods according to class imbalance were applied resampling, reweighting adjustment, change of loss function and representation learning and classification into two stages. In addition, the curriculum learning method and self-space learning method were compared through a total of five network models such as Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, and Convolution Neural Network, and the optimal configuration was found for motor sound classification.

A Study on Priority for Success Factors for Chatting Service of Cyber University and Implementation of Chatting Service

  • Lee, Min Jung;Lim, Hyo Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.151-158
    • /
    • 2018
  • As the competition of 21 cyber universities in Korea has been on a continual increase, they are focusing on improving the quality of the e-learning education in cyber universities. In this study, we intended to derive the failure factors of the previous chatting system in the 2010s and the success factors from previous studies. Next, we identified priorities among five factors(Reliability, UI Convenience, Usability, Network effect, Operational policy) using AHP and the practical ways to implement the chatting service. We applied the chatting system to all the curriculums of S cyber university. Our study finds that the chat service affects the satisfaction of education. Finally, we propose the utilization plan to improve the e-learning education of cyber university through the findings of this research.

The Investigation of Employing Supervised Machine Learning Models to Predict Type 2 Diabetes Among Adults

  • Alhmiedat, Tareq;Alotaibi, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2904-2926
    • /
    • 2022
  • Currently, diabetes is the most common chronic disease in the world, affecting 23.7% of the population in the Kingdom of Saudi Arabia. Diabetes may be the cause of lower-limb amputations, kidney failure and blindness among adults. Therefore, diagnosing the disease in its early stages is essential in order to save human lives. With the revolution in technology, Artificial Intelligence (AI) could play a central role in the early prediction of diabetes by employing Machine Learning (ML) technology. In this paper, we developed a diagnosis system using machine learning models for the detection of type 2 diabetes among adults, through the adoption of two different diabetes datasets: one for training and the other for the testing, to analyze and enhance the prediction accuracy. This work offers an enhanced classification accuracy as a result of employing several pre-processing methods before applying the ML models. According to the obtained results, the implemented Random Forest (RF) classifier offers the best classification accuracy with a classification score of 98.95%.

Process for Automatic Requirement Generation in Korean Requirements Documents using NLP Machine Learning (NLP 기계 학습을 사용한 한글 요구사항 문서에서의 요구사항 자동 생성 프로세스)

  • Young Yun Baek;Soo Jin Park;Young Bum Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.88-93
    • /
    • 2023
  • In software engineering, requirement analysis is an important task throughout the process and takes up a high proportion. However, factors that fail to analyze requirements include communication failure, different understanding of the meaning of requirements, and failure to perform requirements normally. To solve this problem, we derived actors and behaviors using morpheme analysis and BERT algorithms in the Korean requirement document and constructed them as ontologies. A chatbot system with ontology data is constructed to derive a final system event list through Q&A with users. The chatbot system generates the derived system event list as a requirement diagram and a requirement specification and provides it to the user. Through the above system, diagrams and specifications with a level of coverage complied with Korean requirement documents were created.

  • PDF