• Title/Summary/Keyword: learning outcomes

Search Result 792, Processing Time 0.034 seconds

Establishing veterinary graduation competencies and its impact on veterinary medical education in Korea

  • Sang-Soep Nahm;Kichang Lee;Myung Sun Chun;Jongil Kang;Seungjoon Kim;Seong Mok Jeong;Jin Young Chung;Pan Dong Ryu
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.41.1-41.9
    • /
    • 2023
  • Competencies are defined as an observable and assessable set of knowledge, skills, and attitudes. Graduation competencies, which are more comprehensive, refer to the required abilities of students to perform on-site work immediately after graduation. As graduation competencies set the goal of education, various countries and institutions have introduced them for new veterinary graduates. The Korean Association of Veterinary Medical Colleges has recently established such competencies to standardize veterinary education and enhance quality levels thereof. The purpose of this study is to describe the process of establishing graduation competencies as well as their implication for veterinary education in Korea. Graduation competencies for veterinary education in Korea comprise 5 domains (animal health care and disease management, one health expertise, communication and collaboration, research and learning, and veterinary professionalism). These are further divided into 11 core competencies, and 33 achievement standards, which were carefully chosen from previous case analyses and nation-wide surveys. Currently, graduation competencies are used as a standard for setting clear educational purposes for both instructors and students. Establishing these competencies further initiated the development of detailed learning outcomes, and of a list of basic veterinary clinical performances and skills, which is useful for assessing knowledge and skills. The establishment of graduation competencies is expected to contribute to the continuous development of Korean veterinary education in many ways. These include curriculum standardization and licensing examination reform, which will eventually improve the competencies of new veterinary graduates.

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.

Image Clustering Using Machine Learning : Study of InceptionV3 with K-means Methods. (머신 러닝을 사용한 이미지 클러스터링: K-means 방법을 사용한 InceptionV3 연구)

  • Nindam, Somsauwt;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.681-684
    • /
    • 2021
  • In this paper, we study image clustering without labeling using machine learning techniques. We proposed an unsupervised machine learning technique to design an image clustering model that automatically categorizes images into groups. Our experiment focused on inception convolutional neural networks (inception V3) with k-mean methods to cluster images. For this, we collect the public datasets containing Food-K5, Flowers, Handwritten Digit, Cats-dogs, and our dataset Rice Germination, and the owner dataset Palm print. Our experiment can expand into three-part; First, format all the images to un-label and move to whole datasets. Second, load dataset into the inception V3 extraction image features and transferred to the k-mean cluster group hold on six classes. Lastly, evaluate modeling accuracy using the confusion matrix base on precision, recall, F1 to analyze. In this our methods, we can get the results as 1) Handwritten Digit (precision = 1.000, recall = 1.000, F1 = 1.00), 2) Food-K5 (precision = 0.975, recall = 0.945, F1 = 0.96), 3) Palm print (precision = 1.000, recall = 0.999, F1 = 1.00), 4) Cats-dogs (precision = 0.997, recall = 0.475, F1 = 0.64), 5) Flowers (precision = 0.610, recall = 0.982, F1 = 0.75), and our dataset 6) Rice Germination (precision = 0.997, recall = 0.943, F1 = 0.97). Our experiment showed that modeling could get an accuracy rate of 0.8908; the outcomes state that the proposed model is strongest enough to differentiate the different images and classify them into clusters.

Win-Loss Prediction Using AOS Game User Data

  • Ye-Ji Kim;Jung-Hye Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.23-32
    • /
    • 2023
  • E-sports, a burgeoning facet of modern sports culture, has achieved global prominence. Particularly, Aeon of Strife (AOS) games, emblematic of E-sports, blend individual player prowess with team dynamics to significantly influence outcomes. This study aggregates and analyzes real user gameplay data using statistical techniques. Furthermore, it develops and tests win-loss prediction models through machine learning, leveraging a substantial dataset of 1,149,950 individual data points and 230,234 team data points. These models, employing five machine learning algorithms, demonstrate an average accuracy of 80% for individual and 95% for team predictions. The findings not only provide insights beneficial to game developers for enhancing game operations but also offer strategic guidance to general users. Notably, the team-based model outperformed the individual-based model, suggesting its superior predictive capability.

A gene expression programming-based model to predict water inflow into tunnels

  • Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Laith R. Flaih;Abed Alanazi;Abdullah Alqahtani;Shtwai Alsubai;Nabil Ben Kahla;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • Water ingress poses a common and intricate geological hazard with profound implications for tunnel construction's speed and safety. The project's success hinges significantly on the precision of estimating water inflow during excavation, a critical factor in early-stage decision-making during conception and design. This article introduces an optimized model employing the gene expression programming (GEP) approach to forecast tunnel water inflow. The GEP model was refined by developing an equation that best aligns with predictive outcomes. The equation's outputs were compared with measured data and assessed against practical scenarios to validate its potential applicability in calculating tunnel water input. The optimized GEP model excelled in forecasting tunnel water inflow, outperforming alternative machine learning algorithms like SVR, GPR, DT, and KNN. This positions the GEP model as a leading choice for accurate and superior predictions. A state-of-the-art machine learning-based graphical user interface (GUI) was innovatively crafted for predicting and visualizing tunnel water inflow. This cutting-edge tool leverages ML algorithms, marking a substantial advancement in tunneling prediction technologies, providing accuracy and accessibility in water inflow projections.

Fashion Category Oversampling Automation System

  • Minsun Yeu;Do Hyeok Yoo;SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • In the realm of domestic online fashion platform industry the manual registration of product information by individual business owners leads to inconvenience and reliability issues, especially when dealing with simultaneous registrations of numerous product groups. Moreover, bias is significantly heightened due to the low quality of product images and an imbalance in data quantity. Therefore, this study proposes a ResNet50 model aimed at minimizing data bias through oversampling techniques and conducting multiple classifications for 13 fashion categories. Transfer learning is employed to optimize resource utilization and reduce prolonged learning times. The results indicate improved discrimination of up to 33.4% for data augmentation in classes with insufficient data compared to the basic convolution neural network (CNN) model. The reliability of all outcomes is underscored by precision and affirmed by the recall curve. This study is suggested to advance the development of the domestic online fashion platform industry to a higher echelon.

Trend of In Silico Prediction Research Using Adverse Outcome Pathway (독성발현경로(Adverse Outcome Pathway)를 활용한 In Silico 예측기술 연구동향 분석)

  • Sujin Lee;Jongseo Park;Sunmi Kim;Myungwon Seo
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.113-124
    • /
    • 2024
  • Background: The increasing need to minimize animal testing has sparked interest in alternative methods with more humane, cost-effective, and time-saving attributes. In particular, in silico-based computational toxicology is gaining prominence. Adverse outcome pathway (AOP) is a biological map depicting toxicological mechanisms, composed of molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). To understand toxicological mechanisms, predictive models are essential for AOP components in computational toxicology, including molecular structures. Objectives: This study reviewed the literature and investigated previous research cases related to AOP and in silico methodologies. We describe the results obtained from the analysis, including predictive techniques and approaches that can be used for future in silico-based alternative methods to animal testing using AOP. Methods: We analyzed in silico methods and databases used in the literature to identify trends in research on in silico prediction models. Results: We reviewed 26 studies related to AOP and in silico methodologies. The ToxCast/Tox21 database was commonly used for toxicity studies, and MIE was the most frequently used predictive factor among the AOP components. Machine learning was most widely used among prediction techniques, and various in silico methods, such as deep learning, molecular docking, and molecular dynamics, were also utilized. Conclusions: We analyzed the current research trends regarding in silico-based alternative methods for animal testing using AOPs. Developing predictive techniques that reflect toxicological mechanisms will be essential to replace animal testing with in silico methods. In the future, since the applicability of various predictive techniques is increasing, it will be necessary to continue monitoring the trend of predictive techniques and in silico-based approaches.

Inhalation Configuration Detection for COVID-19 Patient Secluded Observing using Wearable IoTs Platform

  • Sulaiman Sulmi Almutairi;Rehmat Ullah;Qazi Zia Ullah;Habib Shah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1478-1499
    • /
    • 2024
  • Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 become an active epidemic disease due to its spread around the globe. The main causes of the spread are through interaction and transmission of the droplets through coughing and sneezing. The spread can be minimized by isolating the susceptible patients. However, it necessitates remote monitoring to check the breathing issues of the patient remotely to minimize the interactions for spread minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote monitoring and recognition of the breathing pattern and abnormal breath detection for timely providing the proper oxygen level required. We propose wearable sensors accelerometer and gyroscope-based breathing time-series data acquisition, temporal features extraction, and machine learning algorithms for pattern detection and abnormality identification. The sensors provide the data through Bluetooth and receive it at the server for further processing and recognition. We collect the six breathing patterns from the twenty subjects and each pattern is recorded for about five minutes. We match prediction accuracies of all machine learning models under study (i.e. Random forest, Gradient boosting tree, Decision tree, and K-nearest neighbor. Our results show that normal breathing and Bradypnea are the most correctly recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are better than the other two algorithms.

Relationship between Music Cognitive Skills and Academic Skills (음악의 인지기술과 학습 기술과의 관계)

  • Chong, Hyun Ju
    • Journal of Music and Human Behavior
    • /
    • v.3 no.1
    • /
    • pp.63-76
    • /
    • 2006
  • Melody is defined as adding spatial dimension to the rhythm which is temporal concept. Being able to understand melodic pattern and to reproduce the pattern also requires cognitive skills. Since 1980, there has been much research on the relationship between academic skills and music cognitive skills, and how to transfer the skills learned in music work to the academic learning. The study purported to examine various research outcomes dealing with the correlational and causal relationships between musical and academic skills. The two dominating theories explaining the connection between two skills ares are "neural theory" and "near transfer theory." The theories focus mainly on the transference of spatial and temporal reasoning which are reinforced in the musical learning. The study reviewed the existing meta-analysis studies, which provided evidence for positive correlation between academic and musical skills, and significance of musical learning in academic skills. The study further examined specific skills area that musical learning is correlated, such as mathematics and reading. The research stated that among many mathematical concepts, proportional topics have the strongest correlation with musical skills. Also with reading, temporal processing also has strong relationship with auditory skills and motor skills, and further affect language and literacy ability. The study suggest that skills learned in the musical work can be transferred to other areas of learning and structured music activities may be every efficient for children for facilitating academic concepts.

  • PDF

A Cross-National Study on Pre-service Teachers' Conceptions of Equitable Mathematics Teaching (수학수업에서 공평성에 관한 한국과 미국 예비초등교사의 인식 비교 연구)

  • Lee, Ji-Eun;Kim, Jinho;Lim, Woong;Kim, Sangmee
    • Education of Primary School Mathematics
    • /
    • v.19 no.4
    • /
    • pp.349-360
    • /
    • 2016
  • This cross-national study examines the similarities and differences between Korean and U.S. pre-service teachers' views on equitable mathematics teaching. Pre-service teachers enrolled in mathematics education courses at the two sites (Korea, n=51; U.S., n=33) were administered a survey consisting of the following: (a) items about pre-service teachers' views on equity relative to mathematical ability, classroom policies and practices, and access to learning opportunities, (b) items about pre-service teachers' agreement in their views on recommended practices, and (c) items about participants' past learning experiences in an equitable learning environment as students. Similarities were found between the sites regarding the following: (a) advocating for equitable mathematics teaching, and (b) conceptualizing equitable teaching as a way to support the learning of less capable students. Differences were found with regard to nurturing growth mindsets in mathematics; positioning toward equal opportunities and outcomes in learning; and relating to grouping as collaborative learning strategies.