Journal of Elementary Mathematics Education in Korea
/
v.10
no.2
/
pp.151-169
/
2006
This study is to adjust the Theory in the Mathematics Education, apply it to learning mathematics and to analyse its effectiveness. The results of the study are summarized as follows. First, because learning mathematics is hierarchical, teachers must make and use a task analysis table classified by units. Second, development age and the retention of mathematics concepts are intimately associated with cognitive development theory. Third, learning mathematics through cognitive processes enhances a student's scholastic achievement. Fourth, students interests and self-confidence can be enhanced through the presentation of both examples and non-examples. We cannot understand the higher-order concepts of mathematics by only its definitions. The only way of understanding such concepts is to have experience through suitable examples.
The Self-reported Evaluation tool developed in this study allows the learners to check and evaluate their own learning by determining the details that are self-assessed. Also this tool allows learners to receive feedback on their self - evaluation results. In this study pre - post test was performed to investigate the effect of self - assessment on the learners' tendency of studying math. The result showed that Self-reported evaluation improved self - confidence, self - strategy on learning mathematics, and meta-cognitive ability. Also by conducting a qualitative analysis of the Self-reported evaluation, students practiced the cognitive activities such as summarizing the contents they have learned that day. They also tried to understand and improve the learning habit, attitude, and learning state. Teachers were also able to communicate with students by providing individual questions and feedback through student's individual Self-reported Evaluation.
The purpose of this study was to investigate the effects of 'problem posing from mathematical problems' on the students' affective domain of mathematics, and to conduct evaluation and management of teachers' respectively. The quantitative and qualitative approaches were combined to analyze the changes in the affective achievement of all the students and individual students in the study. The conclusions of this study are as follows: First, problem-posing class improved the problem-solving ability and meaningful experience in the learning activity itself, thus improving students' self-confidence, interest, value, and desire to learn. Second, The students' affective domain of mathematics should be emphasized, and systematic evaluation and management should be carried out from the first grade of middle school to high school senior in mathematics. Third, it is necessary to present and disseminate them in detail on the national-level to evaluation system and method of affective domain of mathematics. Therefore, the teacher should actively implement the problem-posing teaching and learning in the classroom lesson and help students' affective achievement. and teachers need to measure and manage the affective achievement of all students on a regular basis.
Despite the importance of mathematics education, many students in high school have lost their interests and felt difficulties and they don't have 'mathematical' experience with meanings attached because of the entrance examination. This paper attempted to resolve these problems and find the teaching-method with which students can study by themselves with more confidence. Nowadays students' use of Internet is very popular. After develop 'the development of mathematical power' program based on mathematics history, history, science, the application of problems in real world, and self-evaluation, I made students repeat them after making teaching lessons in classroom as moving pictures. Through this processes, I attempted to develop the Self-Directed Learning' ability by making public education substantial. First of all I analyzed the actual conditions on 'Self-Directed Learning' ability in mathematics subject, the conditions of seeing and hearing in Internet learning program, and students' and their parents' interests in Internet education. By analyzing the records, I observed the significance of the introducing mathematics history in mathematics subject in early stager, cooperative-learning, leveled-learning, self-directed learning, and Internet learning. Actually in aspect of applying 'the development of mathematical power' program, at first I made up the educational conditions to fix the program, collected the teaching materials, established the system of teaching-learning model, developed materials for the learning applying Internet mail and instruments of classroom, and carried out instruction to establish and practice mathematics learning plan. Then I applied the teaching-learning model of leveled cooperation and presentation loaming and at the same time constructed and used the leveled learning materials of complementary, average, and advanced process and instructed to watch teaching moving pictures through Internet mail and in the classroom. After that I observed how effective this program was through the interest arid attitude toward mathematics subject, learning accomplishment, and the change of self-directed learning. Finally, I wrote the conclusion and suggestion on the preparation of conditions fur the students' voluntary participation in mathematics learning and the project and application on 'the development of mathematical power' program and repeated learning with the materials of moving pictures in classroom.
In order to enhance basic competencies for freshmen at engineering college, whose learning ability is gradually declining, a new course was developed to review basic mathematics and physics through a process of collecting opinions from fellow professors. Tests in six fields of math and physics with the same problems showed the correct answer rate rose from 24.8% at the beginning of the semester to 59.0% at the end of the semester after operating the course developed. According to the survey, the students' self-evaluated confidence on the basic competencies in 16 fields of math and physics showed a significant increase. Students with high confidence in basic competencies also received high actual grades. General high school graduates' confidence point in basic competencies improved from 54.7 at the beginning to 75.3 points at the end of the semester, while specialized high school graduates' enhanced from 38.3 to 64.0 which is higher than that of general high school graduates at the beginning of the semester.
As information and communication technologies are being developed so rapidly, education research is actively conducted to provide optimal learning for each student using big data and artificial intelligence technology. In this study, using the mathematics learning data of elementary school 5th to 6th graders conducting blended mathematics classes, we tried to find out what factors predict mathematics academic achievement and developed an artificial intelligence model that predicts mathematics academic performance using the results. Math learning propensity, LMS data, and evaluation results of 205 elementary school students had analyzed with a random forest model. Confidence, anxiety, interest, self-management, and confidence in math learning strategy were included as mathematics learning disposition. The progress rate, number of learning times, and learning time of the e-learning site were collected as LMS data. For evaluation data, results of diagnostic test and unit test were used. As a result of the analysis it was found that the mathematics learning strategy was the most important factor in predicting low-achieving students among mathematics learning propensities. The LMS training data had a negligible effect on the prediction. This study suggests that an AI model can predict low-achieving students with learning data generated in a blended math class. In addition, it is expected that the results of the analysis will provide specific information for teachers to evaluate and give feedback to students.
As intuition is more unreliable than logic or reason, its studies in mathematics and mathematics education have not been done that much. But it has played an important role in the invention and development of mathematics with logic. So, it is necessary to recognize and explore the value of intuition in mathematics education. In this paper, I investigate the function and role of intuition in terms of mathematical learning and problem solving. Especially, I discuss the positive and negative aspects of intuition with its characters. The intuitive acceptance is decided by self-evidence and confidence. In relation to the intuitive acceptance, it is discussed about the pedagogical problems and the role of intuitive thinking in terms of creative problem solving perspectives. Intuition is recognized as an innate ability that all people have. So, we have to concentrate on the mathematics education via intuition and the complementary between intuition and logic. For further research, I suggest the studies for the mathematics education via intuition for students' mathematical development.
Journal of The Korean Association For Science Education
/
v.34
no.7
/
pp.693-701
/
2014
Based on social cognitive theory, self-efficacy in the context of learning has been steadily emphasized as an indicator of students' motivation and performance. The premise for developing such an instrument was that a specific measure of Physics self-efficacy was deemed to be an important predictor of the change processes necessary to improve students' physics understanding. In this study we described the process of developing and validating an instrument to measure students' beliefs in their abilities to perform essential tasks in physics and then investigated high school students' self-efficacy about physics learning and performance. Validity and reliability of PSEI were tested using various statistical techniques including the Cronbach alpha coefficient, exploratory factor analysis. The result of factor analysis supported the contention that the Physics Self-Efficacy Inventory (PSEI) was a multidimensional construct consisting of at least four dimensions: understanding and application of Physics concepts, achievement motivation, confidence for physics laboratory, confidence for Mathematics. The result showed that Kroean high schools students have low Physics self-efficacy for the all four dimensions. Therefore, researchers should focus on development of students' Physics self-efficacy. In addition, the instrument may lead to further understanding of student behavior, which in turn can facilitate the development of strategies that may increase students' aspiration to understand and study Physics. More specifically, by using the PSEI as a pre- and post-test indicator, instructors can gain insight into whether students' confidence levels increase as they engage in learning Physics, and, in addition, what type of teaching strategies are most effective in building deeper understanding of Physics concepts.where they freely exchanged opinions and feedback for constructing better collective ideas.
The purpose of this study is to improve middle students'mathematical communication ability. We designed the mathematics instruction model based on Vygotsky's ZPD to develop the mathematical communication ability, and applied to 2nd grade students in Middle School. And we investigated the significant differences between the group which was instructed with mathematical communication and the group which was instructed with teacher's traditional explanation in aspects of learning achievement, mathematical disposition, and mathematical communication abilities. The results of the study are as follows : 1. There is no significant difference in learning achievement within significance level .05 between the group which was instructed with mathematical communication and the group which was instructed with teacher's traditional explanation by t-test. 2. There is a significant difference in reflection within significance level .01 and in self-confidence within significance level .10 by MANCOVA. 3. There is a significant difference in mathematical communication ability within significance level .01 between two groups by covariance analysis. In particular, there is a significant difference in reading within significance level .01 and in speaking within significance level .05 by t-test.
Ko, Ho Kyoung;Kim, Dong Won;Lee, Hwan Chul;Choi, Tae Young
Journal of the Korean School Mathematics Society
/
v.17
no.1
/
pp.73-92
/
2014
This study was performed in part with the task to find measures to improve the defining characteristics of feelings, value, interest, self-efficacy, and others aspects in regards to learning math among elementary and middle school students. For this study, it was essential to understand the appropriate questions that are needed to be asked during a consultation at a math clinic, for students that are having a hard time learning math. As a method for performing this study, the content of scheduled counseling over 2 years from a math clinic were collected and the questions that were given and taken were analyzed in order to figure out the types of questions needed in order to effectively examine students that are facing difficulty with learning math. The analysis was performed using Grounded theory analysis by Strauss & Corbin(1998) and went through the process of open coding, axial coding, and selective coding. For the paradigm in the categorical analysis stage, 'attitude towards learning math' was set as the casual condition, 'feelings towards learning math' was set as the contextual condition, 'confidence in one's ability to learn math' was set as the phenomenon, 'individual tendencies when learning math' was set as the intervening condition, 'self-management of learning math' was set as the action/interaction strategy, and 'method of learning' was set as the consequence. Through this, the questions that appeared during counseling were linked into categories and subcategories. Through this process, 81 concepts were deducted, which were grouped into 31 categories. I believe that this data can be used as grounded theory for standardization of consultation in clinics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.