• Title/Summary/Keyword: learning environment

Search Result 4,468, Processing Time 0.037 seconds

Understanding the Evaluation of Quality of Experience for Metaverse Services Utilizing Text Mining: A Case Study on Roblox (텍스트마이닝을 활용한 메타버스 서비스의 경험 품질 평가의 이해: 로블록스 사례 연구)

  • Minjun Kim
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.160-172
    • /
    • 2023
  • The metaverse, derived from the fusion of "meta" and "universe," encompasses a three-dimensional virtual realm where avatars actively participate in a range of political, economic, social, and cultural activities. With the recent development of the metaverse, the traditional way of experiencing services is changing. While existing studies have mainly focused on the technological advancements of metaverse services (e.g., scope of technological enablers, application areas of technologies), recent studies are focusing on evaluating the quality of experience (QoE) of metaverse services from a customer perspective. This is because understanding and analyzing service characteristics that determine QoE from a customer perspective is essential for designing successful metaverse services. However, relatively few studies have explored the customer-oriented approach for QoE evaluation thus far. This study conducted an online review analysis using text mining to overcome this limitation. In particular, this study analyzed 227,332 online reviews of the Roblox service, known as a representative metaverse service, and identified points for improving the Roblox service based on the analysis results. As a result of the study, nine service features that can be used for QoE evaluation of metaverse services were derived, and the importance of each feature was estimated through relationship analysis with service satisfaction. The importance estimation results identified the "co-experience" feature as the most important. These findings provide valuable insights and implications for service companies to identify their strengths and weaknesses, and provide useful insights to gain an advantage in the changing metaverse service environment.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

Safety Verification Techniques of Privacy Policy Using GPT (GPT를 활용한 개인정보 처리방침 안전성 검증 기법)

  • Hye-Yeon Shim;MinSeo Kweun;DaYoung Yoon;JiYoung Seo;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.207-216
    • /
    • 2024
  • As big data was built due to the 4th Industrial Revolution, personalized services increased rapidly. As a result, the amount of personal information collected from online services has increased, and concerns about users' personal information leakage and privacy infringement have increased. Online service providers provide privacy policies to address concerns about privacy infringement of users, but privacy policies are often misused due to the long and complex problem that it is difficult for users to directly identify risk items. Therefore, there is a need for a method that can automatically check whether the privacy policy is safe. However, the safety verification technique of the conventional blacklist and machine learning-based privacy policy has a problem that is difficult to expand or has low accessibility. In this paper, to solve the problem, we propose a safety verification technique for the privacy policy using the GPT-3.5 API, which is a generative artificial intelligence. Classification work can be performed evenin a new environment, and it shows the possibility that the general public without expertise can easily inspect the privacy policy. In the experiment, how accurately the blacklist-based privacy policy and the GPT-based privacy policy classify safe and unsafe sentences and the time spent on classification was measured. According to the experimental results, the proposed technique showed 10.34% higher accuracy on average than the conventional blacklist-based sentence safety verification technique.

Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network (CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식)

  • Guiyoung Son;Soonil Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.284-290
    • /
    • 2024
  • Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.

Key Factors of Talented Scientists' Growth and ExpeI1ise Development (과학인재의 성장 및 전문성 발달과정에서의 영향 요인에 관한 연구)

  • Oh, Hun-Seok;Choi, Ji-Young;Choi, Yoon-Mi;Kwon, Kwi-Heon
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.907-918
    • /
    • 2007
  • This study was conducted to explore key factors of expertise development of talented scientists who achieved outstanding research performance according to the stages of expertise development and dimensions of individual-domain-field. To fulfill the research purpose, 31 domestic scientists who were awarded major prizes in the field of science were interviewed in-depth from March to September, 2007. Stages of expertise development were analyzed in light of Csikszentmihalyi's IDFI (individual-domain-field interaction) model. Self-directed learning, multiple interests and finding strength, academic and liberal home environment, and meaningful encounter were major factors affecting expertise development in the exploration stage. In the beginner stage, independence, basic knowledge on major, and thirst for knowledge at university affected expertise development. Task commitment, finding flow, finding their field of interest and lifelong research topic, and mentor in formal education were the affecting factors in the competent stage. Finally, placing priority, communication skills, pioneering new domain, expansion of the domain, and evaluation and support system affected talented scientists' expertise development in the leading stage. The meaning of major patterns of expertise development were analyzed and described. Based on these analyses, educational implications for nurturing scientists were suggested.

Implementation of an Automated Agricultural Frost Observation System (AAFOS) (농업서리 자동관측 시스템(AAFOS)의 구현)

  • Kyu Rang Kim;Eunsu Jo;Myeong Su Ko;Jung Hyuk Kang;Yunjae Hwang;Yong Hee Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.63-74
    • /
    • 2024
  • In agriculture, frost can be devastating, which is why observation and forecasting are so important. According to a recent report analyzing frost observation data from the Korea Meteorological Administration, despite global warming due to climate change, the late frost date in spring has not been accelerated, and the frequency of frost has not decreased. Therefore, it is important to automate and continuously operate frost observation in risk areas to prevent agricultural frost damage. In the existing frost observation using leaf wetness sensors, there is a problem that the reference voltage value fluctuates over a long period of time due to contamination of the observation sensor or changes in the humidity of the surrounding environment. In this study, a datalogger program was implemented to automatically solve these problems. The established frost observation system can stably and automatically accumulate time-resolved observation data over a long period of time. This data can be utilized in the future for the development of frost diagnosis models using machine learning methods and the production of frost occurrence prediction information for surrounding areas.

Fraud Detection System Model Using Generative Adversarial Networks and Deep Learning (생성적 적대 신경망과 딥러닝을 활용한 이상거래탐지 시스템 모형)

  • Ye Won Kim;Ye Lim Yu;Hong Yong Choi
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.59-72
    • /
    • 2020
  • Artificial Intelligence is establishing itself as a familiar tool from an intractable concept. In this trend, financial sector is also looking to improve the problem of existing system which includes Fraud Detection System (FDS). It is being difficult to detect sophisticated cyber financial fraud using original rule-based FDS. This is because diversification of payment environment and increasing number of electronic financial transactions has been emerged. In order to overcome present FDS, this paper suggests 3 types of artificial intelligence models, Generative Adversarial Network (GAN), Deep Neural Network (DNN), and Convolutional Neural Network (CNN). GAN proves how data imbalance problem can be developed while DNN and CNN show how abnormal financial trading patterns can be precisely detected. In conclusion, among the experiments on this paper, WGAN has the highest improvement effects on data imbalance problem. DNN model reflects more effects on fraud classification comparatively.

Development and application of SW·AI education program for Digital Sprout Camp

  • Jong Hun Kim;Jae Guk Shin;Seung Bo Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.217-225
    • /
    • 2024
  • To foster the core talents of the future, the development of diverse and substantial SW·AI education programs is required, and a systematic system that can assist public education in SW and AI must be established. In this study, we develop and combine SW·AI education modules to construct a SW and AI education program applicable to public education. We also establish a systematic education system and provide sustainable SW·AI education to elementary, middle, and high school students through 'Job's Garage Camp' based on various sharing platforms. By creating a sustainable follow-up educational environment, students are encouraged to continue their self-directed learning of SW and AI. As a result of conducting a pre-post survey of students participating in the 'Job's Garage Camp', the post-survey values improved compared to the pre-survey values in all areas of 'interest', 'understanding and confidence', and 'career aspirations'. Based on these results, it can be confirmed that students had a universal positive perception and influence on SW and AI. Therefore, if the operation case of 'Job's Garage Camp' is improved and expanded, it can be presented as a standard model applicable to other SW and AI education programs in the future.

A Study on Pre-service Elementary School Teachers' Perspectives on the Science Curriculum in the Fourth Industrial Revolution Era through Photovoice Activity: Based on Three Perspectives on the 'Saber-toothed Tiger Curriculum' (초등 예비교사들의 포토보이스 활동을 통한 4차 산업혁명 시대 과학 교육과정 관점 탐색 - '검치호랑이 교육과정'의 세 가지 관점을 바탕으로 -)

  • Kim, Dong-Ryeul
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.2
    • /
    • pp.219-232
    • /
    • 2024
  • This study aims to determine the perspectives of pre-service elementary school teachers on the science curriculum in the fourth industrial revolution era. In this study, 128 pre-service elementary school teachers were asked to express their perspectives on the Saber-toothed Tiger Curriculum through photovoice activities. The resulting images were classified into three types: conservative, progressive, and radical perspectives. The number of both conservative and progressive perspectives was similar and high, whereas the number of radical perspectives was l ow. Those who had conservative perspectives on the Saber-toothed Tiger curriculum regarded "Inquiry" as the basis of the science curriculum, which should be maintained regardless of the time period and environment. Similarly, older teachers believed that this curriculum was based on eternal truth, which should be protected. Those who showed progressive perspectives on the Saber-toothed Tiger curriculum regarded a progressive person as someone succeeding to the blood of "New fist," and they showed positive attitudes toward AI-based education such as coding and meta-verse, regarding these practices as part of the teaching and learning method that could replace the existing inquiry-based education. Those who showed radical perspectives on the Saber-toothed Tiger Curriculum assumed critical attitudes toward the rapidly changing political circumstances of science education and criticized conflicts between different social classes formed through progressive curriculum. Based on these results, this study found that pre-service elementary school teachers needed to consider the science curriculum from several different perspectives rather than just one.