Journal of Korean Academy of Fundamentals of Nursing
/
v.25
no.1
/
pp.33-45
/
2018
Purpose: Objectives of this study were to identify and describe cultural meaning for nursing students in the class in fundamental nursing practice. Methods: Data were collected from November 2016 to May 2017 included focus group interviews and participants observation. The key informants in this study included 23 nursing students divided into 3 focus groups who had taken the course in fundamental nursing practice in university U and university S in Kyungpook, and university D in Jeonnam. Interviews continued until no new information could be identified from transcripts. Data were analyzed using the taxonomic analysis method developed by Spradley. Results: Based on the data acquired from the interviews, cultural domains in the class "fundamental nursing practice" were classified as 'community oriented activities', 'learning and playing space', 'relationship of difference and discrimination', 'time for present and future'. Conclusion: The culture in the class "fundamental nursing practice" could be summarized as 'non-standardized learning with team dynamics'. Also nursing students learned about a small society whose members are becoming nurses. Results indicate that it is critical for professors to understand students' values, beliefs and their attitude in order to aid in adjustment to class.
Proceedings of the Korean Society for Technology of Plasticity Conference
/
2005.10a
/
pp.231-234
/
2005
The high temperature deformation behavior of AZ 31 Mg alloy was investigated by designing a back propagation neural network that uses a gradient descent-learning algorithm. A neural network modeling is an intelligent technique that can solve non-linear and complex problems by learning from the samples. Therefore, some experimental data have been firstly obtained from continuous compression tests performed on a thermo-mechanical simulator over a range of temperatures $(250-500^{\circ}C)$ with strain rates of $0.0001-100s^{-1}$ and true strains of 0.1 to 0.6. The inputs for neural network model are strain, strain rate, and temperature and the output is flow stress. It was found that the trained model could well predict the flow stress for some experimental data that have not been used in the training. Workability of a material can be evaluated by means of power dissipation map with respect to strain, strain rate and temperature. Power dissipation map was constructed using the flow stress predicted from the neural network model at finer Intervals of strain, strain rates and subsequently processing maps were developed for hot working processes for AZ 31 Mg alloy. The safe domains of hot working of AZ 31 Mg alloy were identified and validated through microstructural investigations.
As the COVID-19 continues spreading, Korea's Ministry of Education (MOE) announced that all public schools, including elementary, middle, and high schools, must begin on April 9, 2020, via online teaching for the first time in the nation's history. There were opposite views among educators regarding the unprecedented attempt to start school online. This study intends to analyze the strategies and policies of distance learning in the public education sector using the experiences in Korea, which has been dealing with the COVID-19 pandemic over the past six months, and thus presents educational implications that may be of interest other countries in the post-COVID-19 era. This study first conceptualized the distance education policy in two domains: technological infrastructure and technological teaching and learning, and then examined what specific policies have supported distance education in school settings. For the analysis of policies supporting distance education in Korea, this study analyzed the relevant documents that include the annual plan and press release uploaded on the website of MOE from early March until early August. Accordingly, 13 documents that contain the distance education policy were analyzed in this study. To provide equal opportunities for all students and ensure fair resource allocations, technological inequality should be discussed in the context of educational inequality. Finally, this study looks at how strategies and policies could be related to educational equality and equity.
Siddique, Kamran;Akhtar, Zahid;Khan, Muhammad Ashfaq;Jung, Yong-Hwan;Kim, Yangwoo
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.8
/
pp.4021-4037
/
2018
In network intrusion detection research, two characteristics are generally considered vital to building efficient intrusion detection systems (IDSs): an optimal feature selection technique and robust classification schemes. However, the emergence of sophisticated network attacks and the advent of big data concepts in intrusion detection domains require two more significant aspects to be addressed: employing an appropriate big data computing framework and utilizing a contemporary dataset to deal with ongoing advancements. As such, we present a comprehensive approach to building an efficient IDS with the aim of strengthening academic anomaly detection research in real-world operational environments. The proposed system has the following four characteristics: (i) it performs optimal feature selection using information gain and branch-and-bound algorithms; (ii) it employs machine learning techniques for classification, namely, Logistic Regression, Naïve Bayes, and Random Forest; (iii) it introduces bulk synchronous parallel processing to handle the computational requirements of large-scale networks; and (iv) it utilizes a real-time contemporary dataset generated by the Information Security Centre of Excellence at the University of Brunswick (ISCX-UNB) to validate its efficacy. Experimental analysis shows the effectiveness of the proposed framework, which is able to achieve high accuracy, low computational cost, and reduced false alarms.
Nearest neighbor algorithms classify an unseen input instance by selecting similar cases and use the discovered membership to make predictions about the unknown features of the input instance. The usefulness of the nearest neighbor algorithms have been demonstrated sufficiently in many real-world domains. In nearest neighbor algorithms, it is an important issue to assign proper weights to the attributes. Therefore, in this paper, we propose a new method which can automatically assigns to each attribute a weight of its importance with respect to the target attribute. The method has been implemented as a computer program and its effectiveness has been tested on a number of machine learning databases publicly available.
Hussain, Shahid;Mufti, Muhammad Rafiq;Sohail, Muhammad Khalid;Afzal, Humaira;Ahmad, Ghufran;Khan, Arif Ali
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.4
/
pp.2162-2179
/
2019
The performance of text classification is highly related to the feature selection methods. Usually, two tasks are performed when a feature selection method is applied to construct a feature set; 1) assign score to each feature and 2) select the top-N features. The selection of top-N features in the existing filter-based feature selection methods is biased by their discriminative power and the empirical process which is followed to determine the value of N. In order to improve the text classification performance by presenting a more illustrative feature set, we present an approach via a potent representation learning technique, namely DBN (Deep Belief Network). This algorithm learns via the semantic illustration of documents and uses feature vectors for their formulation. The nodes, iteration, and a number of hidden layers are the main parameters of DBN, which can tune to improve the classifier's performance. The results of experiments indicate the effectiveness of the proposed method to increase the classification performance and aid developers to make effective decisions in certain domains.
This study devises a novel approach, namely quadruple 1D convolutional neural network, for detecting connection stiffness reduction in steel truss bridge structure using experimental and numerical modal data. The method is developed based on expertise in two domains: firstly, in Structural Health Monitoring, the mode shapes and its high-order derivatives, including second, third, and fourth derivatives, are accurate indicators in assessing damages. Secondly, in the Machine Learning literature, the deep convolutional neural networks are able to extract relevant features from input data, then perform classification tasks with high accuracy and reduced time complexity. The efficacy and effectiveness of the present method are supported through an extensive case study with the railway Nam O bridge. It delivers highly accurate results in assessing damage localization and damage severity for single as well as multiple damage scenarios. In addition, the robustness of this method is tested with the presence of white noise reflecting unavoidable uncertainties in signal processing and modeling in reality. The proposed approach is able to provide stable results with data corrupted by noise up to 10%.
Given the growing volume of biomedical papers, the ability to efficiently extract keywords has become crucial for accessing and responding to important information in the literature. In this study, we conduct a comprehensive evaluation of different unsupervised learning-based models and BERT-based models for keyword extraction in the biomedical field. Our experimental findings reveal that the BioBERT model, trained on biomedical-specific data, achieves the highest performance. This study offers precise and dependable insights to guide forthcoming research in biomedical keyword extraction. By establishing a well-suited experimental framework and conducting thorough comparisons and analyses of diverse models, we have furnished essential information. Furthermore, we anticipate extending our contributions to other domains by providing comparative experiments and practical guidelines for effective keyword extraction.
Sehrish Abrejo;Amber Baig;Mutee U Rahman;Adnan Asghar Ali
International Journal of Computer Science & Network Security
/
v.23
no.3
/
pp.123-129
/
2023
The most effective tutoring method is one-on-one, face-to-face in-person human tutoring. However, due to the limited availability of human tutors, computer-based alternatives have been developed. These software based alternatives are called Intelligent Tutoring Systems (ITS) which are used to tutor students in different domains. Although ITS performance is inferior to that of human teachers, the field is growing and has recently become very popular. User interfaces play key role in usability perspective of ITS. Even though ITS research has advanced, the majority of the work has concentrated on learning sciences while mostly disregarding user interfaces. Because of this, the present ITS includes effective learning modules but a less effective interface design. Usability is one approach to gauge a software's performance, while "ease of use" is one way to assess a software's quality. This paper measures the usability effectiveness of an ITS which is designed to teach Object-Oriented (OO) analysis and design concepts using Unified Modeling Language (UML). Computer Supported Usability Questionnaire (CSUQ) survey was conducted for usability evaluation of UML-ITS. According to participants' responses to the system's usability survey, all responses lie between 1 to 3 scale points which indicate that the participants were satisfied and comfortable with most of the system's interface features.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.61-61
/
2022
최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.