• Title/Summary/Keyword: learning domains

Search Result 446, Processing Time 0.026 seconds

An Ethnography on Fundamental Nursing Practice Class (기본간호학실습 수업의 문화기술지 연구)

  • An, Hyo-Ja;Park, Hyun-Ju
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.25 no.1
    • /
    • pp.33-45
    • /
    • 2018
  • Purpose: Objectives of this study were to identify and describe cultural meaning for nursing students in the class in fundamental nursing practice. Methods: Data were collected from November 2016 to May 2017 included focus group interviews and participants observation. The key informants in this study included 23 nursing students divided into 3 focus groups who had taken the course in fundamental nursing practice in university U and university S in Kyungpook, and university D in Jeonnam. Interviews continued until no new information could be identified from transcripts. Data were analyzed using the taxonomic analysis method developed by Spradley. Results: Based on the data acquired from the interviews, cultural domains in the class "fundamental nursing practice" were classified as 'community oriented activities', 'learning and playing space', 'relationship of difference and discrimination', 'time for present and future'. Conclusion: The culture in the class "fundamental nursing practice" could be summarized as 'non-standardized learning with team dynamics'. Also nursing students learned about a small society whose members are becoming nurses. Results indicate that it is critical for professors to understand students' values, beliefs and their attitude in order to aid in adjustment to class.

High temperature deformation behaviors of AZ31 Mg alloy by Artificial Neural Network (인공 신경망을 이용한 AZ31 Mg 합금의 고온 변형 거동연구)

  • Lee B. H.;Reddy N. S.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.231-234
    • /
    • 2005
  • The high temperature deformation behavior of AZ 31 Mg alloy was investigated by designing a back propagation neural network that uses a gradient descent-learning algorithm. A neural network modeling is an intelligent technique that can solve non-linear and complex problems by learning from the samples. Therefore, some experimental data have been firstly obtained from continuous compression tests performed on a thermo-mechanical simulator over a range of temperatures $(250-500^{\circ}C)$ with strain rates of $0.0001-100s^{-1}$ and true strains of 0.1 to 0.6. The inputs for neural network model are strain, strain rate, and temperature and the output is flow stress. It was found that the trained model could well predict the flow stress for some experimental data that have not been used in the training. Workability of a material can be evaluated by means of power dissipation map with respect to strain, strain rate and temperature. Power dissipation map was constructed using the flow stress predicted from the neural network model at finer Intervals of strain, strain rates and subsequently processing maps were developed for hot working processes for AZ 31 Mg alloy. The safe domains of hot working of AZ 31 Mg alloy were identified and validated through microstructural investigations.

  • PDF

Technological Innovation in Public Education in the Era of COVID-19: Focusing on Distance Education Policy in South Korea

  • Shin, Hyejin
    • Asian Journal of Innovation and Policy
    • /
    • v.9 no.2
    • /
    • pp.207-222
    • /
    • 2020
  • As the COVID-19 continues spreading, Korea's Ministry of Education (MOE) announced that all public schools, including elementary, middle, and high schools, must begin on April 9, 2020, via online teaching for the first time in the nation's history. There were opposite views among educators regarding the unprecedented attempt to start school online. This study intends to analyze the strategies and policies of distance learning in the public education sector using the experiences in Korea, which has been dealing with the COVID-19 pandemic over the past six months, and thus presents educational implications that may be of interest other countries in the post-COVID-19 era. This study first conceptualized the distance education policy in two domains: technological infrastructure and technological teaching and learning, and then examined what specific policies have supported distance education in school settings. For the analysis of policies supporting distance education in Korea, this study analyzed the relevant documents that include the annual plan and press release uploaded on the website of MOE from early March until early August. Accordingly, 13 documents that contain the distance education policy were analyzed in this study. To provide equal opportunities for all students and ensure fair resource allocations, technological inequality should be discussed in the context of educational inequality. Finally, this study looks at how strategies and policies could be related to educational equality and equity.

Developing an Intrusion Detection Framework for High-Speed Big Data Networks: A Comprehensive Approach

  • Siddique, Kamran;Akhtar, Zahid;Khan, Muhammad Ashfaq;Jung, Yong-Hwan;Kim, Yangwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4021-4037
    • /
    • 2018
  • In network intrusion detection research, two characteristics are generally considered vital to building efficient intrusion detection systems (IDSs): an optimal feature selection technique and robust classification schemes. However, the emergence of sophisticated network attacks and the advent of big data concepts in intrusion detection domains require two more significant aspects to be addressed: employing an appropriate big data computing framework and utilizing a contemporary dataset to deal with ongoing advancements. As such, we present a comprehensive approach to building an efficient IDS with the aim of strengthening academic anomaly detection research in real-world operational environments. The proposed system has the following four characteristics: (i) it performs optimal feature selection using information gain and branch-and-bound algorithms; (ii) it employs machine learning techniques for classification, namely, Logistic Regression, Naïve Bayes, and Random Forest; (iii) it introduces bulk synchronous parallel processing to handle the computational requirements of large-scale networks; and (iv) it utilizes a real-time contemporary dataset generated by the Information Security Centre of Excellence at the University of Brunswick (ISCX-UNB) to validate its efficacy. Experimental analysis shows the effectiveness of the proposed framework, which is able to achieve high accuracy, low computational cost, and reduced false alarms.

Calculating Attribute Weights in K-Nearest Neighbor Algorithms using Information Theory (정보이론을 이용한 K-최근접 이웃 알고리즘에서의 속성 가중치 계산)

  • Lee Chang-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.9
    • /
    • pp.920-926
    • /
    • 2005
  • Nearest neighbor algorithms classify an unseen input instance by selecting similar cases and use the discovered membership to make predictions about the unknown features of the input instance. The usefulness of the nearest neighbor algorithms have been demonstrated sufficiently in many real-world domains. In nearest neighbor algorithms, it is an important issue to assign proper weights to the attributes. Therefore, in this paper, we propose a new method which can automatically assigns to each attribute a weight of its importance with respect to the target attribute. The method has been implemented as a computer program and its effectiveness has been tested on a number of machine learning databases publicly available.

A Step towards the Improvement in the Performance of Text Classification

  • Hussain, Shahid;Mufti, Muhammad Rafiq;Sohail, Muhammad Khalid;Afzal, Humaira;Ahmad, Ghufran;Khan, Arif Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2162-2179
    • /
    • 2019
  • The performance of text classification is highly related to the feature selection methods. Usually, two tasks are performed when a feature selection method is applied to construct a feature set; 1) assign score to each feature and 2) select the top-N features. The selection of top-N features in the existing filter-based feature selection methods is biased by their discriminative power and the empirical process which is followed to determine the value of N. In order to improve the text classification performance by presenting a more illustrative feature set, we present an approach via a potent representation learning technique, namely DBN (Deep Belief Network). This algorithm learns via the semantic illustration of documents and uses feature vectors for their formulation. The nodes, iteration, and a number of hidden layers are the main parameters of DBN, which can tune to improve the classifier's performance. The results of experiments indicate the effectiveness of the proposed method to increase the classification performance and aid developers to make effective decisions in certain domains.

Connection stiffness reduction analysis in steel bridge via deep CNN and modal experimental data

  • Dang, Hung V.;Raza, Mohsin;Tran-Ngoc, H.;Bui-Tien, T.;Nguyen, Huan X.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.495-508
    • /
    • 2021
  • This study devises a novel approach, namely quadruple 1D convolutional neural network, for detecting connection stiffness reduction in steel truss bridge structure using experimental and numerical modal data. The method is developed based on expertise in two domains: firstly, in Structural Health Monitoring, the mode shapes and its high-order derivatives, including second, third, and fourth derivatives, are accurate indicators in assessing damages. Secondly, in the Machine Learning literature, the deep convolutional neural networks are able to extract relevant features from input data, then perform classification tasks with high accuracy and reduced time complexity. The efficacy and effectiveness of the present method are supported through an extensive case study with the railway Nam O bridge. It delivers highly accurate results in assessing damage localization and damage severity for single as well as multiple damage scenarios. In addition, the robustness of this method is tested with the presence of white noise reflecting unavoidable uncertainties in signal processing and modeling in reality. The proposed approach is able to provide stable results with data corrupted by noise up to 10%.

Comparative Study of Keyword Extraction Models in Biomedical Domain (생의학 분야 키워드 추출 모델에 대한 비교 연구)

  • Donghee Lee;Soonchan Kwon;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.77-84
    • /
    • 2023
  • Given the growing volume of biomedical papers, the ability to efficiently extract keywords has become crucial for accessing and responding to important information in the literature. In this study, we conduct a comprehensive evaluation of different unsupervised learning-based models and BERT-based models for keyword extraction in the biomedical field. Our experimental findings reveal that the BioBERT model, trained on biomedical-specific data, achieves the highest performance. This study offers precise and dependable insights to guide forthcoming research in biomedical keyword extraction. By establishing a well-suited experimental framework and conducting thorough comparisons and analyses of diverse models, we have furnished essential information. Furthermore, we anticipate extending our contributions to other domains by providing comparative experiments and practical guidelines for effective keyword extraction.

UML-ITS Usability Evaluation of Intelligent Tutoring System

  • Sehrish Abrejo;Amber Baig;Mutee U Rahman;Adnan Asghar Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.123-129
    • /
    • 2023
  • The most effective tutoring method is one-on-one, face-to-face in-person human tutoring. However, due to the limited availability of human tutors, computer-based alternatives have been developed. These software based alternatives are called Intelligent Tutoring Systems (ITS) which are used to tutor students in different domains. Although ITS performance is inferior to that of human teachers, the field is growing and has recently become very popular. User interfaces play key role in usability perspective of ITS. Even though ITS research has advanced, the majority of the work has concentrated on learning sciences while mostly disregarding user interfaces. Because of this, the present ITS includes effective learning modules but a less effective interface design. Usability is one approach to gauge a software's performance, while "ease of use" is one way to assess a software's quality. This paper measures the usability effectiveness of an ITS which is designed to teach Object-Oriented (OO) analysis and design concepts using Unified Modeling Language (UML). Computer Supported Usability Questionnaire (CSUQ) survey was conducted for usability evaluation of UML-ITS. According to participants' responses to the system's usability survey, all responses lie between 1 to 3 scale points which indicate that the participants were satisfied and comfortable with most of the system's interface features.

Application of transfer learning to develop radar-based rainfall prediction model with GAN(Generative Adversarial Network) for multiple dam domains (다중 댐 유역에 대한 강우예측모델 개발을 위한 전이학습 기법의 적용)

  • Choi, Suyeon;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.61-61
    • /
    • 2022
  • 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.

  • PDF