• 제목/요약/키워드: learning distribution

검색결과 981건 처리시간 0.031초

LSTM-GAN 기반 이상탐지 모델을 활용한 시계열 데이터의 동적 보정기법 (A Dynamic Correction Technique of Time-Series Data using Anomaly Detection Model based on LSTM-GAN)

  • 정한석;김한준
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권2호
    • /
    • pp.103-111
    • /
    • 2023
  • 본 논문은 시계열 데이터에 존재하는 이상값을 정상값으로 변환하는 새로운 데이터 보정기법을 제안한다. 최근 IT기술의 발전으로 센서를 통해 방대한 시계열 데이터가 수집되고 있다. 하지만 센서의 고장, 비정상적 환경으로 인해, 대부분의 시계열 데이터는 다수의 이상값을 포함할 수 있다. 이상값이 포함된 원천 데이터를 그대로 사용하여 예측모델을 구축하는 경우, 고신뢰도의 예측 서비스가 실현되기 어렵다. 이에 본 논문은 LSTM-GAN 모델을 활용하여 원천 시계열 데이터에 존재하는 이상값을 탐지하고, DTW(Dynamic Time Warping) 및 GAN 기법을 결합하여 분할된 윈도우 단위로 이상값을 정상값으로 보정하는 기법을 제안한다. 기본 아이디어는 탐지된 이상값이 포함된 윈도우에 인접한 정상 분포 데이터의 통계정보를 DTW에 적용하여 연쇄적으로 GAN 모델을 구축하여 정상적 시계열 데이터를 생성하는 것이다. 오픈 NAB 데이터를 활용한 실험을 통해, 우리는 제안 기법이 기존 2개의 보정기법보다 성능이 우수함을 보인다.

Integrated Water Resources Management in the Era of nGreat Transition

  • Ashkan Noori;Seyed Hossein Mohajeri;Milad Niroumand Jadidi;Amir Samadi
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.34-34
    • /
    • 2023
  • The Chah-Nimeh reservoirs, which are a sort of natural lakes located in the border of Iran and Afghanistan, are the main drinking and agricultural water resources of Sistan arid region. Considering the occurrence of intense seasonal wind, locally known as levar wind, this study aims to explore the possibility to provide a TSM (Total Suspended Matter) monitoring model of Chah-Nimeh reservoirs using multi-temporal satellite images and in-situ wind speed data. The results show that a strong correlation between TSM concentration and wind speed are present. The developed empirical model indicated high performance in retrieving spatiotemporal distribution of the TSM concentration with R2=0.98 and RMSE=0.92g/m3. Following this observation, we also consider a machine learning-based model to predicts the average TSM using only wind speed. We connect our in-situ wind speed data to the TSM data generated from the inversion of multi-temporal satellite imagery to train a neural network based mode l(Wind2TSM-Net). Examining Wind2TSM-Net model indicates this model can retrieve the TSM accurately utilizing only wind speed (R2=0.88 and RMSE=1.97g/m3). Moreover, this results of this study show tha the TSM concentration can be estimated using only in situ wind speed data independent of the satellite images. Specifically, such model can supply a temporally persistent means of monitoring TSM that is not limited by the temporal resolution of imagery or the cloud cover problem in the optical remote sensing.

  • PDF

코로나 확진자 수 예측을 위한 BI-LSTM과 GRU 알고리즘의 성능 비교 분석 (Comparative analysis of performance of BI-LSTM and GRU algorithm for predicting the number of Covid-19 confirmed cases)

  • 김재호;김장영
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.187-192
    • /
    • 2022
  • 위드 코로나의 예정 발표일이 결정되었고, 위드 코로나에 가장 중요한 조건인 백신 접종을 아직 부작용 걱정 때문에 완료하지 않은 사람들이 있다. 또한 위드 코로나로 경제는 회복될 수 있지만 감염자 수는 급증할 수 있다. 본 논문은 위드 코로나에 앞서 코로나19에 대한 경각심을 깨우고자, 코로나19를 비선형 확률과정으로 예측한다. 여기서 딥러닝의 RNN중 양방향 LSTM인 BI-LSTM와 LSTM보다 gate수를 줄인 GRU를 사용하고 이것을 train set, test set, 손실함수, 잔차분석, 정규분포, 자기 상관을 통해서 비교 분석하여 어떠한 성능이 더 좋은지 비교하고 예측한다.

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • 제32권2호
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

Force-deformation relationship prediction of bridge piers through stacked LSTM network using fast and slow cyclic tests

  • Omid Yazdanpanah;Minwoo Chang;Minseok Park;Yunbyeong Chae
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.469-484
    • /
    • 2023
  • A deep recursive bidirectional Cuda Deep Neural Network Long Short Term Memory (Bi-CuDNNLSTM) layer is recruited in this paper to predict the entire force time histories, and the corresponding hysteresis and backbone curves of reinforced concrete (RC) bridge piers using experimental fast and slow cyclic tests. The proposed stacked Bi-CuDNNLSTM layers involve multiple uncertain input variables, including horizontal actuator displacements, vertical actuators axial loads, the effective height of the bridge pier, the moment of inertia, and mass. The functional application programming interface in the Keras Python library is utilized to develop a deep learning model considering all the above various input attributes. To have a robust and reliable prediction, the dataset for both the fast and slow cyclic tests is split into three mutually exclusive subsets of training, validation, and testing (unseen). The whole datasets include 17 RC bridge piers tested experimentally ten for fast and seven for slow cyclic tests. The results bring to light that the mean absolute error, as a loss function, is monotonically decreased to zero for both the training and validation datasets after 5000 epochs, and a high level of correlation is observed between the predicted and the experimentally measured values of the force time histories for all the datasets, more than 90%. It can be concluded that the maximum mean of the normalized error, obtained through Box-Whisker plot and Gaussian distribution of normalized error, associated with unseen data is about 10% and 3% for the fast and slow cyclic tests, respectively. In recapitulation, it brings to an end that the stacked Bi-CuDNNLSTM layer implemented in this study has a myriad of benefits in reducing the time and experimental costs for conducting new fast and slow cyclic tests in the future and results in a fast and accurate insight into hysteretic behavior of bridge piers.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

북스캔을 이용한 도서 손상 단계에 따른 딥 러닝 기반 도서 복구 방법에 관한 연구 (A Study on Book Recovery Method Depending on Book Damage Levels Using Book Scan)

  • 석경호;이주희;박병찬;김석윤;김영모
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.154-160
    • /
    • 2023
  • Recently, with the activation of eBook services, books are being published simultaneously as physical books and digitized eBooks. Paper books are more expensive than e-books due to printing and distribution costs, so demand for relatively inexpensive e-books is increasing. There are cases where previously published physical books cannot be digitized due to the circumstances of the publisher or author, so there is a movement among individual users to digitize books that have been published for a long time. However, existing research has only studied the advancement of the pre-processing process that can improve text recognition before applying OCR technology, and there are limitations to digitization depending on the condition of the book. Therefore, support for book digitization services depending on the condition of the physical book is needed. need. In this paper, we propose a method to support digitalization services according to the status of physical books held by book owners. Create images by scanning books and extract text information from the images through OCR. We propose a method to recover text that cannot be extracted depending on the state of the book using BERT, a natural language processing deep learning model. As a result, it was confirmed that the recovery method using BERT is superior when compared to RNN, which is widely used in recommendation technology.

  • PDF

백열전구를 이용한 학습 교구용 단락보호장치에 대한 고찰 (A Study on the Short-circuit Protection System for Learning Teaching Instruction Using Incandescent Light Bulb)

  • 김홍용
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.844-850
    • /
    • 2023
  • 연구목적: 본 논문은 백열전구를 이용하여 단락보호 전원공급 장치를 개발하고, 이를 학습 교구로 활용하는 연구에 관한 것이다. 전기 안전과 에너지 절약을 동시에 고려한 이 연구는 교육과 산업 분야에서 중요한 응용 가능성을 가지고 있다. 백열전구를 활용한 단락보호 전원공급 장치는 기존의 전원공급 장치와 비교하여 안전성과 효율성을 향상시키는데 도움이 되며, 학습 교구로 학습자들에게 전기 안전 교육을 제공함으로써 실생활에서의 전기 안전 지식을 습득하는데 기여한다. 연구방법: 백열전구를 사용하여 단락보호 전원공급 장치를 개발하고 개발된 장치의 성능 평가 및 안전성 확인을 통해 학습 교구로 활용할 수 있는 새로운 전원공급장치를 제작 한다. 결론:백열전구를 활용한 단락보호 전원공급 장치의 개발과 학습 교구로의 응용 가능성을 탐구한 연구이다. 이를 통해 전기 안전과 에너지 절약에 기여할 수 있는 혁신적인 솔루션을 제시하였으며, 교육 분야와 산업 분야에서의 응용 가능성을 열어놓았다. 이러한 연구는 전기 안전 및 에너지 관리 분야에서의 연구와 교육에 기여할 것으로 기대된다.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Vision Transformer를 이용한 UAV 영상의 벼 도복 영역 진단 (Diagnosis of the Rice Lodging for the UAV Image using Vision Transformer)

  • 명현정;김서정;최강인;김동훈;이광형;안형근;정성환;김병준
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.28-37
    • /
    • 2023
  • 쌀 수확량 감소에 크게 영향을 주는 것은 집중호우나 태풍에 의한 도복 피해이다. 도복 피해 면적 산정 방법은 직접 피해 지역을 방문하는 현장 조사를 기반으로 육안 검사 및 판단하여 객관적인 결과 획득이 어렵고 많은 시간과 비용이 요구된다. 본 논문에서는 무인 항공기로 촬영된 RGB 영상을 Vision Transformer 기반 Segformer을 활용한 벼 도복 영역 추정 및 진단을 제안한다. 제안된 방법은 도복, 정상, 그리고 배경 영역을 추정하고 종자관리요강 내 벼 포장 검사를 통해 도복률을 진단한다. 진단된 결과를 통해 벼 도복 피해 분포를 관찰할 수 있게 하며, 정부 보급종 포장 검사에 활용할 수 있다. 본 연구의 벼 도복 영역 추정 성능은 평균 정확도 98.33%와 mIoU 96.79%의 성능을 나타내었다.