• Title/Summary/Keyword: learning distribution

Search Result 981, Processing Time 0.024 seconds

Acquisition of Region of Interest through Illumination Correction in Dynamic Image Data (동영상 데이터에서 조명 보정을 사용한 관심 영역의 획득)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.439-445
    • /
    • 2021
  • Low-cost, ultra-high-speed cameras, made possible by the development of image sensors and small displays, can be very useful in image processing and pattern recognition. This paper introduces an algorithm that corrects irregular lighting from a high-speed image that is continuously input with a slight time interval, and which then obtains an exposed skin color region that is the area of interest in a person from the corrected image. In this study, the non-uniform lighting effect from a received high-speed image is first corrected using a frame blending technique. Then, the region of interest is robustly obtained from the input high-speed color image by applying an elliptical skin color distribution model generated from iterative learning in advance. Experimental results show that the approach presented in this paper corrects illumination in various types of color images, and then accurately acquires the region of interest. The algorithm proposed in this study is expected to be useful in various types of practical applications related to image recognition, such as face recognition and tracking, lighting correction, and video indexing and retrieval.

Perceptions and attitudes of dental hygienists toward radiation safety and protection in the Republic of Korea

  • Yun, Kwidug;Lee, Kyung-Min;An, Seo-Young;Yoon, Suk-Ja;Jeong, Ho-Gul;Lee, Jae-Seo
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.168-175
    • /
    • 2021
  • To investigate the perceptions and attitudes of dental hygienists toward radiation safety management in Korea. A total of 800 dental hygienists were randomly selected for an anonymous survey, and 203 of them participated. The questionnaire items included the following: sex, career period, type of installed radiographic equipment, recognition of the diagnostic reference level (DRL), participation in radiation safety education, and attitudes toward radiation protection for both patients and dental hygienists. The participants were divided into two groups according to their years of experience (< 10 years versus ≥ 10 years). The difference between the groups was investigated according to frequency distribution. Fisher's exact test or Pearson's chi-square (𝛘2) test was used as appropriate. A regression analysis was performed to investigate the impact of wearing a thyroid collar for personnel protection during patient radiation exposure. The types of installed radiographic equipment included panoramic radiography (96.1%), cephalometric radiography (76.9%), intraoral radiography (72.9%), and cone-beam computed tomography (69.5%). Significant differences were observed in the learning pathway for the DRL (Fisher's exact test, p < 0.05), satisfaction with radiation safety education (Pearson's 𝛘2 test = 5.3975, Pr = 0.02), and use of personnel radiation monitoring systems (Pearson's 𝛘2 test = 18.1233, Pr = 0.000) between the groups. Significant differences were also observed in personnel protection using a thyroid collar and patient protection during panoramic radiography (odds ratio = 14.2). Dental hygienists with more than 10 years of experience were more satisfied with radiation safety education and more interested in radiation monitoring. Considering career experience, customized, continuous, and effective radiation safety management education should be provided.

Comparison of policy perceptions between national R&D projects and standing committees using topic modeling analysis : focusing on the ICT field (토픽모델링 분석을 활용한 국가연구개발사업과제와 국회 상임위원회 사이의 정책 인식 비교 : ICT 분야를 중심으로)

  • Song, Byoungki;Kim, Sangung
    • Journal of Industrial Convergence
    • /
    • v.20 no.7
    • /
    • pp.1-11
    • /
    • 2022
  • In this paper, numerical values are derived using topic modeling among data-based evaluation methodologies discussed by various research institutes. In addition, we will focus on the ICT field to see if there is a difference in policy perception between the national R&D project and standing committee. First, we create model for classifying ICT documents by learning R&D project data using HAN model. And we perform LDA topic modeling analysis on ICT documents classified by applying the model, compare the distribution with the topics derived from the R&D project data and proceedings of standing committees. Specifically, a total of 26 topics were derived. Also, R&D project data had professionally topics, and the standing committee-discuss relatively social and popular issues. As the difference in perception can be numerically confirmed, it can be used as a basic study on indicators that can be used for future policy or project evaluation.

Using the Health Belief Model to Assess Graduate Emotional Wellness: An Empirical Study from Malaysia

  • DAUD, Salina;WAN HANAFI, Wan Noordiana;SOHAIL, M. Sadiq;WAN ABDULLAH, Wan Mohammad Taufik;AHMAD, Nurul Nadiah
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.8
    • /
    • pp.19-27
    • /
    • 2022
  • Graduate well-being is foundational to academic success, and they are becoming more and more vulnerable. This is as they suffer from mental health challenges like anxiety and depression at rates six times higher than the general population. When the nature of their educational experience changes, such as when they had to stay in their homes during the COVID-19 pandemic, the stress on their mental health increases. The number of cases of emotional wellness among university students is considered a public health problem, but these young people often do not seek appropriate treatment. This study, therefore, aims to identify the influence of health behavior factors on graduate emotional wellness. This study used a questionnaire with a cross-sectional survey design. Questionnaires were distributed online to graduates from selected Private and Public Higher Education Institutions in Malaysia. The Partial Least Square Equation Model (PLS-SEM) was used to analyze the results of the study. Overall findings indicate that the health behavior factors have a significant influence on graduate emotional wellness. The findings from this study will benefit the management, academics, counselors, and other entities, including the Students' Representative Council, in identifying ways to improve services and upgrade the necessary facilities to enhance the graduate's emotional wellness.

Assessing the Landslide Susceptibility of Cultural Heritages of Buyeo-gun, Chungcheongnam-do (충남 부여군 문화재의 산사태 민감성 평가)

  • Kim, Jun-Woo;Kim, Ho Gul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.5
    • /
    • pp.1-13
    • /
    • 2022
  • The damages caused by landslides are increasing worldwide due to climate change. In Korea, damages from landslides occur frequently, making it necessary to develop the effective response strategies. In particular, there is a lack of countermeasures against landslides in cultural heritage areas. The purpose of this study was to spatially analyze the relationship between Buyeo-gun's cultural heritage and landslide susceptible areas in Buyeo-gun, Chungcheongnam-do, which has a long history. Nine spatial distribution models were used to evaluate the landslide susceptibility, and the ensemble method was applied to reduce the uncertainty of individual model. There were 17 cultural heritages belonging to the landslide susceptible area. As a result of calculating the area ratio of the landslide susceptible area for cultural heritages, the cultural heritages with 100% of the area included in the landslide susceptible area were "Standing statue of Maae in Hongsan Sangcheon-ri" and "Statue of King Seonjo." More than 35% of "Jeungsanseong", "Garimseong", and "Standing stone statue of Maitreya Bodhisattva in Daejosa Temple" belonged to landslide susceptible areas. In order to effectively prevent landslide damage, the application of landslide prevention measures should be prioritized according to the proportion belonging to the landslide susceptible area. Since it is very difficult to restore cultural properties once destroyed, preventive measures are required before landslide damage occurs. The approach and results of this study provide basic data and guidelines for disaster response plans to prevent landslides in Buyeo-gun.

Deep Learning-based Korean Dialect Machine Translation Research Considering Linguistics Features and Service (언어적 특성과 서비스를 고려한 딥러닝 기반 한국어 방언 기계번역 연구)

  • Lim, Sangbeom;Park, Chanjun;Yang, Yeongwook
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2022
  • Based on the importance of dialect research, preservation, and communication, this paper conducted a study on machine translation of Korean dialects for dialect users who may be marginalized. For the dialect data used, AIHUB dialect data distributed based on the highest administrative district was used. We propose a many-to-one dialect machine translation that promotes the efficiency of model distribution and modeling research to improve the performance of the dialect machine translation by applying Copy mechanism. This paper evaluates the performance of the one-to-one model and the many-to-one model as a BLEU score, and analyzes the performance of the many-to-one model in the Korean dialect from a linguistic perspective. The performance improvement of the one-to-one machine translation by applying the methodology proposed in this paper and the significant high performance of the many-to-one machine translation were derived.

Bayesian logit models with auxiliary mixture sampling for analyzing diabetes diagnosis data (보조 혼합 샘플링을 이용한 베이지안 로지스틱 회귀모형 : 당뇨병 자료에 적용 및 분류에서의 성능 비교)

  • Rhee, Eun Hee;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.131-146
    • /
    • 2022
  • Logit models are commonly used to predicting and classifying categorical response variables. Most Bayesian approaches to logit models are implemented based on the Metropolis-Hastings algorithm. However, the algorithm has disadvantages of slow convergence and difficulty in ensuring adequacy for the proposal distribution. Therefore, we use auxiliary mixture sampler proposed by Frühwirth-Schnatter and Frühwirth (2007) to estimate logit models. This method introduces two sequences of auxiliary latent variables to make logit models satisfy normality and linearity. As a result, the method leads that logit model can be easily implemented by Gibbs sampling. We applied the proposed method to diabetes data from the Community Health Survey (2020) of the Korea Disease Control and Prevention Agency and compared performance with Metropolis-Hastings algorithm. In addition, we showed that the logit model using auxiliary mixture sampling has a great classification performance comparable to that of the machine learning models.

Price Prediction of Fractional Investment Products Using LSTM Algorithm: Focusing on Musicow (LSTM 모델을 이용한 조각투자 상품의 가격 예측: 뮤직카우를 중심으로)

  • Jung, Hyunjo;Lee, Jaehwan;Suh, Jihae
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.81-94
    • /
    • 2022
  • Real estate and artworks were considered challenging investment targets for individual investors because of their relatively high average transaction price despite their long investment history. Recently, the so-called fractional investment, generally known as investing in a share of the ownership right for real-life assets, etc., and most investors perceive that they actually own a piece (fraction) of the ownership right through their investments, is gaining popularity. Founded in 2016, Musicow started the first service that allows users to invest in copyright fees related to music distribution. Using the LSTM algorithm, one of the deep learning algorithms, this research predict the price of right to participate in copyright fees traded in Musicow. In addition to variables related to claims such as transfer price, transaction volume of claims, and copyright fees, comprehensive indicators indicating the market conditions for music copyright fees participation, exchange rates reflecting economic conditions, KTB interest rates, and Korea Composite Stock Index were also used as variables. As a result, it was confirmed that the LSTM algorithm accurately predicts the transaction price even in the case of fractional investment which has a relatively low transaction volume.

Assessment and Analysis of Fidelity and Diversity for GAN-based Medical Image Generative Model (GAN 기반 의료영상 생성 모델에 대한 품질 및 다양성 평가 및 분석)

  • Jang, Yoojin;Yoo, Jaejun;Hong, Helen
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.2
    • /
    • pp.11-19
    • /
    • 2022
  • Recently, various researches on medical image generation have been suggested, and it becomes crucial to accurately evaluate the quality and diversity of the generated medical images. For this purpose, the expert's visual turing test, feature distribution visualization, and quantitative evaluation through IS and FID are evaluated. However, there are few methods for quantitatively evaluating medical images in terms of fidelity and diversity. In this paper, images are generated by learning a chest CT dataset of non-small cell lung cancer patients through DCGAN and PGGAN generative models, and the performance of the two generative models are evaluated in terms of fidelity and diversity. The performance is quantitatively evaluated through IS and FID, which are one-dimensional score-based evaluation methods, and Precision and Recall, Improved Precision and Recall, which are two-dimensional score-based evaluation methods, and the characteristics and limitations of each evaluation method are also analyzed in medical imaging.

Power Quality Disturbances Detection and Classification using Fast Fourier Transform and Deep Neural Network (고속 푸리에 변환 및 심층 신경망을 사용한 전력 품질 외란 감지 및 분류)

  • Senfeng Cen;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.115-126
    • /
    • 2023
  • Due to the fluctuating random and periodical nature of renewable energy generation power quality disturbances occurred more frequently in power generation transformation transmission and distribution. Various power quality disturbances may lead to equipment damage or even power outages. Therefore it is essential to detect and classify different power quality disturbances in real time automatically. The traditional PQD identification method consists of three steps: feature extraction feature selection and classification. However, the handcrafted features are imprecise in the feature selection stage, resulting in low classification accuracy. This paper proposes a deep neural architecture based on Convolution Neural Network and Long Short Term Memory combining the time and frequency domain features to recognize 16 types of Power Quality signals. The frequency-domain data were obtained from the Fast Fourier Transform which could efficiently extract the frequency-domain features. The performance in synthetic data and real 6kV power system data indicate that our proposed method generalizes well compared with other deep learning methods.