• Title/Summary/Keyword: learning curve model

Search Result 180, Processing Time 0.027 seconds

Predictive of Osteoporosis by Tree-based Machine Learning Model in Post-menopause Woman (폐경 여성에서 트리기반 머신러닝 모델로부터 골다공증 예측)

  • Lee, In-Ja;Lee, Junho
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.495-502
    • /
    • 2020
  • In this study, the prevalence of osteoporosis was predicted based on 10 independent variables such as age, weight, and alcohol consumption and 4 tree-based machine-learning models, and the performance of each model was compared. Also the model with the highest performance was used to check the performance by clearing the independent variable, and Area Under Curve(ACU) was utilized to evaluate the performance of the model. The ACU for each model was Decision tree 0.663, Random forest 0.704, GBM 0.702, and XGBoost 0.710 and the importance of the variable was shown in the order of age, weight, and family history. As a result of using XGBoost, the highest performance model and clearing independent variables, the ACU shows the best performance of 0.750 with 7 independent variables. This data suggests that this method be applied to predict osteoporosis, but also other various diseases. In addition, it is expected to be used as basic data for big data research in the health care field.

Methodology of Valuing Economics of Offshore Wind Power System Using Learning Curve Model (학습곡선모형을 이용한 해상풍력발전의 경제성평가 기법)

  • Park, Min-Hyug;Lee, Jae-Gul;Kim, Jung-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.353-356
    • /
    • 2007
  • 환경규제 강화와 화석연료에 대한 대안으로 신/재생에너지에 대한 관심이 고조 되고 있다. 그 중 하나인 풍력발전은 각국마다 풍황 조건과 정책에 의해 다양한 시장을 만들어 내고 있다. 본 연구는 해상풍력발전시스템의 투자 전망에 대하여 기존의 재무적 평가기법에 학습곡선효과를 가미하는 방법론을 제시하고자 하였다. NPV 등의 가치 평가기법이 할인된 현금흐름 분석을 하는 것이라면 이에 더하여 현금의 유출에 있어서 학습율을 반영한 원가를 반영하는 것이 제시하고자 하는 연구 방법론의 핵심이다. 해상풍력발전을 투자자 입장에서 모의 해본 결과 국내 풍력발전은 80% 학습율 수준 정도의 혁신적 개선 없이는 투자 타당성을 찾기 어려우며 이러한 현실적인 문제점을 정책적으로 보완해야 할 수 있는 것이 발전가격을 중심으로 하는 정부의 지원제도임을 제시 하였다.

  • PDF

Learning Effects on a Joint Buyer/manufacturer Inventory Model (안전재고의 경제적 품질률 결정에 관한 연구 -철도차량부품을 중심으로-)

  • Ho Ki, Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.17
    • /
    • pp.25-37
    • /
    • 1988
  • Joint inventory 방법을 다룬 기존의 연구는 생산비용이 일정하다는 조건만을 고려하였다. 본 논문은 기존의 연구에다 새로운 변수(learning curve ratio and learning retension)를 제조업자 측면에서 고려하여 보다 확장된 모델을 다룬다. Joint inventory 모델은 첫째 단일구매자와 둘째 학습곡선비율과 learning retention의 정도에 있어서 그 범위를 결합시키는데 이용되기 위해 개발되어 졌다. 구매자와 제조업자를 위한 로트 사이즈를 결정하기 위하여 증분비용접근방법 (Incremental Cost Approach, ICA)을 쓴다. 총결합비용은 기존모델보다 현저하게 적은데 그 이유는 학습과 learning retention 효과로 인한 제조업자의 생산비 절감과 재고유지 비용의 감소 때문이다. 학습과 learning retention이 현격한 경우, 총결합비용은 제조업자와 구매자의 개별적인 최적정책에서의 비용합(합)보다 적다. 소개된 모델의 효과를 보이기 위해 수치예제를 이용하였다.

  • PDF

A Study on the Estimation Methodology for the Stand-by Energy Savings of Televisions Using Learning Curves and Diffusion Models (학습곡선 및 보급모형 분석을 통한 TV의 대기전력 절감량 추정 방법론에 관한 연구)

  • Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.239-241
    • /
    • 2009
  • In this paper, an estimation methodology for stand-by energy savings of electric appliances is proposed and some case studies are carried out for televisions. The methodology is based on learning curves and diffusion models, which are able to explain the market characteristics such as market prices and the diffusion speed. Some models were developed to estimate power and energy savings for high-efficient appliances and these model have been used broadly. These models are also applied to this study and modified to estimate stand-by energy savings.

MicroRNA-Gene Association Prediction Method using Deep Learning Models

  • Seung-Won Yoon;In-Woo Hwang;Kyu-Chul Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.294-299
    • /
    • 2023
  • Micro ribonucleic acids (miRNAs) can regulate the protein expression levels of genes in the human body and have recently been reported to be closely related to the cause of disease. Determining the genes related to miRNAs will aid in understanding the mechanisms underlying complex miRNAs. However, the identification of miRNA-related genes through wet experiments (in vivo, traditional methods are time- and cost-consuming). To overcome these problems, recent studies have investigated the prediction of miRNA relevance using deep learning models. This study presents a method for predicting the relationships between miRNAs and genes. First, we reconstruct a negative dataset using the proposed method. We then extracted the feature using an autoencoder, after which the feature vector was concatenated with the original data. Thereafter, the concatenated data were used to train a long short-term memory model. Our model exhibited an area under the curve of 0.9609, outperforming previously reported models trained using the same dataset.

Machine Learning-Enhanced Survival Analysis: Identifying Significant Predictors of Mortality in Heart Failure

  • Heejeong Jasmine Lee;Sang-Sun Yoo;Kang-Yoon Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2495-2511
    • /
    • 2024
  • State of the art machine learning methods can enhance the analysis of clinical data and improve the ability to predict patient outcomes because data collected from clinical records, such as heart failure mortality studies, are often high dimensional, heterogeneous and give challenges to traditional statistical analysis techniques. To address this challenge, this study conducted a survival analysis based on a dataset of 299 patients with heart failure, using Python libraries. Cox regression was used to model and analyse mortality, and to find which features are strongly associated with this outcome. The Kaplan-Meier survival curve approach was used to show the patterns of patient survival over time. The analysis showed that age, ejection fraction, and serum creatinine level were significantly (p≤0.001) associated with mortality. Anaemia and creatinine phosphokinase also reached statistical significance (p-values 0.026 and 0.007, respectively). The Cox model showed good concordance (0.77) with the data, suggesting that the identified variables are useful for predicting mortality in patients with heart failure.

The Effect of Gesture-Command Pairing Condition on Learnability when Interacting with TV

  • Jo, Chun-Ik;Lim, Ji-Hyoun;Park, Jun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • Objective: The aim of this study is to investigate learnability of gestures-commands pair when people use gestures to control a device. Background: In vision-based gesture recognition system, selecting gesture-command pairing is critical for its usability in learning. Subjective preference and its agreement score, used in previous study(Lim et al., 2012) was used to group four gesture-command pairings. To quantify the learnability, two learning models, average time model and marginal time model, were used. Method: Two sets of eight gestures, total sixteen gestures were listed by agreement score and preference data. Fourteen participants divided into two groups, memorized each set of gesture-command pair and performed gesture. For a given command, time to recall the paired gesture was collected. Results: The average recall time for initial trials were differed by preference and agreement score as well as the learning rate R driven by the two learning models. Conclusion: Preference rate agreement score showed influence on learning of gesture-command pairs. Application: This study could be applied to any device considered to adopt gesture interaction system for device control.

Preliminary Test of Google Vertex Artificial Intelligence in Root Dental X-ray Imaging Diagnosis (구글 버텍스 AI을 이용한 치과 X선 영상진단 유용성 평가)

  • Hyun-Ja Jeong
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.267-273
    • /
    • 2024
  • Using a cloud-based vertex AI platform that can develop an artificial intelligence learning model without coding, this study easily developed an artificial intelligence learning model by the non-professional general public and confirmed its clinical applicability. Nine dental diseases and 2,999 root disease X-ray images released on the Kaggle site were used for the learning data, and learning, verification, and test data images were randomly classified. Image classification and multi-label learning were performed through hyper-parameter tuning work using a learning pipeline in vertex AI's basic learning model workflow. As a result of performing AutoML(Automated Machine Learning), AUC(Area Under Curve) was found to be 0.967, precision was 95.6%, and reproduction rate was 95.2%. It was confirmed that the learned artificial intelligence model was sufficient for clinical diagnosis.

Identifying the Optimal Machine Learning Algorithm for Breast Cancer Prediction

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.80-88
    • /
    • 2024
  • Breast cancer remains a significant global health burden, necessitating accurate and timely detection for improved patient outcomes. Machine learning techniques have demonstrated remarkable potential in assisting breast cancer diagnosis by learning complex patterns from multi-modal patient data. This study comprehensively evaluates several popular machine learning models, including logistic regression, decision trees, random forests, support vector machines (SVMs), naive Bayes, k-nearest neighbors (KNN), XGBoost, and ensemble methods for breast cancer prediction using the Wisconsin Breast Cancer Dataset (WBCD). Through rigorous benchmarking across metrics like accuracy, precision, recall, F1-score, and area under the ROC curve (AUC), we identify the naive Bayes classifier as the top-performing model, achieving an accuracy of 0.974, F1-score of 0.979, and highest AUC of 0.988. Other strong performers include logistic regression, random forests, and XGBoost, with AUC values exceeding 0.95. Our findings showcase the significant potential of machine learning, particularly the robust naive Bayes algorithm, to provide highly accurate and reliable breast cancer screening from fine needle aspirate (FNA) samples, ultimately enabling earlier intervention and optimized treatment strategies.

Metabolic Syndrome Prediction Using Machine Learning Models with Genetic and Clinical Information from a Nonobese Healthy Population

  • Choe, Eun Kyung;Rhee, Hwanseok;Lee, Seungjae;Shin, Eunsoon;Oh, Seung-Won;Lee, Jong-Eun;Choi, Seung Ho
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.31.1-31.7
    • /
    • 2018
  • The prevalence of metabolic syndrome (MS) in the nonobese population is not low. However, the identification and risk mitigation of MS are not easy in this population. We aimed to develop an MS prediction model using genetic and clinical factors of nonobese Koreans through machine learning methods. A prediction model for MS was designed for a nonobese population using clinical and genetic polymorphism information with five machine learning algorithms, including naïve Bayes classification (NB). The analysis was performed in two stages (training and test sets). Model A was designed with only clinical information (age, sex, body mass index, smoking status, alcohol consumption status, and exercise status), and for model B, genetic information (for 10 polymorphisms) was added to model A. Of the 7,502 nonobese participants, 647 (8.6%) had MS. In the test set analysis, for the maximum sensitivity criterion, NB showed the highest sensitivity: 0.38 for model A and 0.42 for model B. The specificity of NB was 0.79 for model A and 0.80 for model B. In a comparison of the performances of models A and B by NB, model B (area under the receiver operating characteristic curve [AUC] = 0.69, clinical and genetic information input) showed better performance than model A (AUC = 0.65, clinical information only input). We designed a prediction model for MS in a nonobese population using clinical and genetic information. With this model, we might convince nonobese MS individuals to undergo health checks and adopt behaviors associated with a preventive lifestyle.