• Title/Summary/Keyword: learning classification

Search Result 3,326, Processing Time 0.026 seconds

A Computer Aided Diagnosis Algorithm for Classification of Malignant Melanoma based on Deep Learning (딥 러닝 기반의 악성흑색종 분류를 위한 컴퓨터 보조진단 알고리즘)

  • Lim, Sangheon;Lee, Myungsuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • The malignant melanoma accounts for about 1 to 3% of the total malignant tumor in the West, especially in the US, it is a disease that causes more than 9,000 deaths each year. Generally, skin lesions are difficult to detect the features through photography. In this paper, we propose a computer-aided diagnosis algorithm based on deep learning for classification of malignant melanoma and benign skin tumor in RGB channel skin images. The proposed deep learning model configures the tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to segment a skin lesion area in the dermoscopic image. We could implement algorithms to classify malignant melanoma and benign tumor using skin lesion image and results of expert's labeling in ResNet. The U-Net model obtained a dice similarity coefficient of 83.45% compared with results of expert's labeling. The classification accuracy of malignant melanoma obtained the 83.06%. As the result, it is expected that the proposed artificial intelligence algorithm will utilize as a computer-aided diagnosis algorithm and help to detect malignant melanoma at an early stage.

A Deep Learning Method for Brain Tumor Classification Based on Image Gradient

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1233-1241
    • /
    • 2022
  • Tumors of the brain are the deadliest, with a life expectancy of only a few years for those with the most advanced forms. Diagnosing a brain tumor is critical to developing a treatment plan to help patients with the disease live longer. A misdiagnosis of brain tumors will lead to incorrect medical treatment, decreasing a patient's chance of survival. Radiologists classify brain tumors via biopsy, which takes a long time. As a result, the doctor will need an automatic classification system to identify brain tumors. Image classification is one application of the deep learning method in computer vision. One of the deep learning's most powerful algorithms is the convolutional neural network (CNN). This paper will introduce a novel deep learning structure and image gradient to classify brain tumors. Meningioma, glioma, and pituitary tumors are the three most popular forms of brain cancer represented in the Figshare dataset, which contains 3,064 T1-weighted brain images from 233 patients. According to the numerical results, our method is more accurate than other approaches.

Intrusion Detection Approach using Feature Learning and Hierarchical Classification (특징학습과 계층분류를 이용한 침입탐지 방법 연구)

  • Han-Sung Lee;Yun-Hee Jeong;Se-Hoon Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.249-256
    • /
    • 2024
  • Machine learning-based intrusion detection methodologies require a large amount of uniform learning data for each class to be classified, and have the problem of having to retrain the entire system when adding an attack type to be detected or classified. In this paper, we use feature learning and hierarchical classification methods to solve classification problems and data imbalance problems using relatively little training data, and propose an intrusion detection methodology that makes it easy to add new attack types. The feasibility of the proposed system was verified through experiments using KDD IDS data..

Hyperspectral Image Classification using EfficientNet-B4 with Search and Rescue Operation Algorithm

  • S.Srinivasan;K.Rajakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.213-219
    • /
    • 2023
  • In recent years, popularity of deep learning (DL) is increased due to its ability to extract features from Hyperspectral images. A lack of discrimination power in the features produced by traditional machine learning algorithms has resulted in poor classification results. It's also a study topic to find out how to get excellent classification results with limited samples without getting overfitting issues in hyperspectral images (HSIs). These issues can be addressed by utilising a new learning network structure developed in this study.EfficientNet-B4-Based Convolutional network (EN-B4), which is why it is critical to maintain a constant ratio between the dimensions of network resolution, width, and depth in order to achieve a balance. The weight of the proposed model is optimized by Search and Rescue Operations (SRO), which is inspired by the explorations carried out by humans during search and rescue processes. Tests were conducted on two datasets to verify the efficacy of EN-B4, with Indian Pines (IP) and the University of Pavia (UP) dataset. Experiments show that EN-B4 outperforms other state-of-the-art approaches in terms of classification accuracy.

A Co-Evolutionary Computing for Statistical Learning Theory

  • Jun Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.281-285
    • /
    • 2005
  • Learning and evolving are two basics for data mining. As compared with classical learning theory based on objective function with minimizing training errors, the recently evolutionary computing has had an efficient approach for constructing optimal model without the minimizing training errors. The global search of evolutionary computing in solution space can settle the local optima problems of learning models. In this research, combining co-evolving algorithm into statistical learning theory, we propose an co-evolutionary computing for statistical learning theory for overcoming local optima problems of statistical learning theory. We apply proposed model to classification and prediction problems of the learning. In the experimental results, we verify the improved performance of our model using the data sets from UCI machine learning repository and KDD Cup 2000.

Knowledge Distillation Based Continual Learning for PCB Part Detection (PCB 부품 검출을 위한 Knowledge Distillation 기반 Continual Learning)

  • Gang, Su Myung;Chung, Daewon;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.868-879
    • /
    • 2021
  • PCB (Printed Circuit Board) inspection using a deep learning model requires a large amount of data and storage. When the amount of stored data increases, problems such as learning time and insufficient storage space occur. In this study, the existing object detection model is changed to a continual learning model to enable the recognition and classification of PCB components that are constantly increasing. By changing the structure of the object detection model to a knowledge distillation model, we propose a method that allows knowledge distillation of information on existing classified parts while simultaneously learning information on new components. In classification scenario, the transfer learning model result is 75.9%, and the continual learning model proposed in this study shows 90.7%.

Deep Learning in Dental Radiographic Imaging

  • Hyuntae Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Deep learning algorithms are becoming more prevalent in dental research because they are utilized in everyday activities. However, dental researchers and clinicians find it challenging to interpret deep learning studies. This review aimed to provide an overview of the general concept of deep learning and current deep learning research in dental radiographic image analysis. In addition, the process of implementing deep learning research is described. Deep-learning-based algorithmic models perform well in classification, object detection, and segmentation tasks, making it possible to automatically diagnose oral lesions and anatomical structures. The deep learning model can enhance the decision-making process for researchers and clinicians. This review may be useful to dental researchers who are currently evaluating and assessing deep learning studies in the field of dentistry.

A Meta-learning Approach for Building Multi-classifier Systems in a GA-based Inductive Learning Environment (유전 알고리즘 기반 귀납적 학습 환경에서 다중 분류기 시스템의 구축을 위한 메타 학습법)

  • Kim, Yeong-Joon;Hong, Chul-Eui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • The paper proposes a meta-learning approach for building multi-classifier systems in a GA-based inductive learning environment. In our meta-learning approach, a classifier consists of a general classifier and a meta-classifier. We obtain a meta-classifier from classification results of its general classifier by applying a learning algorithm to them. The role of the meta-classifier is to evaluate the classification result of its general classifier and decide whether to participate into a final decision-making process or not. The classification system draws a decision by combining classification results that are evaluated as correct ones by meta-classifiers. We present empirical results that evaluate the effect of our meta-learning approach on the performance of multi-classifier systems.

A Study on Image Classification using Deep Learning-Based Transfer Learning (딥 러닝 기반의 전이 학습을 이용한 이미지 분류에 관한 연구)

  • Jung-Hee Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.413-420
    • /
    • 2023
  • For a long time, researchers have presented excellent results in the field of image retrieval due to many studies on CBIR. However, there is still a semantic gap between these search results for images and human perception. It is still a difficult problem to classify images with a level of human perception using a small number of images. Therefore, this paper proposes an image classification model using deep learning-based transfer learning to minimize the semantic gap between images of people and search systems in image retrieval. As a result of the experiment, the loss rate of the learning model was 0.2451% and the accuracy was 0.8922%. The implementation of the proposed image classification method was able to achieve the desired goal. And in deep learning, it was confirmed that the CNN's transfer learning model method was effective in creating an image database by adding new data.

A Case Study on Application of Artificial Intelligence Convergence Education in Elementary Biological Classification Learning (초등 생물분류 학습에서 인공지능 융합교육의 적용 사례 연구)

  • Shin, Won-Sub
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.2
    • /
    • pp.284-295
    • /
    • 2020
  • The purpose of this study is to explore the possibility of artificial intelligence convergence education (AICE) in elementary biological classification learning. First, the possibility of AICE was analyzed in the field of 2015 revised elementary life science curriculum. The artificial intelligence biological classification (AIBC) education program targeted plant life. The possibility of AICE in the elementary life science curriculum was suggested through the consultation process of three elementary science education experts. The AIBC education program was developed through the review process of elementary education experts. The results of this study are as follows. First, 8(32%) achievement standards were available for AICE in elementary life science. Second, 18(86%) of the 21 items reviewed by the experts for the AIBC education program developed in this study were positively evaluated. Third, in this study, through the analysis of the possibility of AIBC in the elementary life field and the review of the experts, the AIBC education program including teaching and learning models, strategies, and guidance was developed. The results of this study were based on the review of the experts, and as a follow-up study, applied research to elementary students is needed. It is also hoped that various studies on AICE will be conducted not only in the life field but also in science and other fields. Finally, we expect that the results of this study will be applied to bio-classification learning to help students improve classification capabilities and generate classification knowledge.