• 제목/요약/키워드: learning by searching rate

검색결과 16건 처리시간 0.021초

온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안 (The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce)

  • 김기태;오원석;임근원;차은우;신민영;김종우
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.1-23
    • /
    • 2018
  • E-commerce 환경의 발전으로 소비자들은 다양한 상품들을 한 자리에서 폭 넓게 비교할 수 있게 되었다. 하지만 온라인 쇼핑몰에 올라와있는 상당량의 주요 상품 정보들이 이미지 형태이기 때문에 컴퓨터가 인지할 수 있는 텍스트 기반 검색 시스템에 반영될 수 없다는 한계가 존재한다. 이러한 한계점은 일반적으로 기존 기계학습 기술 및 OCR(Optical Character Recognition) 기술을 활용해, 이미지 형태로 된 키워드를 인식함으로써 개선할 수 있다. 그러나 기존 OCR 기술은 이미지 안에 글자가 아닌 그림이 많고 글자 크기가 작으면 낮은 인식률을 보인다는 문제가 있다. 이에 본 연구에서는 기존 기술들의 한계점을 해결하기 위하여, 딥러닝 기반 사물인식 모형 중 하나인 SSD(Single Shot MultiBox Detector)를 개조하여 이미지 형태의 상품 카탈로그 내의 텍스트 인식모형을 설계하였다. 하지만 이를 학습시키기 위한 데이터를 구축하는 데 상당한 시간과 비용이 필요했는데, 이는 지도학습의 방법론을 따르는 SSD 모형은 훈련 데이터마다 직접 정답 라벨링을 해줘야 하기 때문이다. 본 연구는 이러한 문제점을 해결하기 위해 '훈련 데이터 자동 생성 프로그램'을 함께 개발하였다. 훈련 데이터 자동 생성 프로그램을 통해 수작업으로 데이터를 만드는 것에 비하여 시간과 비용을 대폭 절감할 수 있었으며, 생성된 훈련용 데이터를 통해 모형의 인식 성능을 높일 수 있었다. 더 나아가 실험연구를 통해 자동으로 생성된 훈련 데이터의 특징별로 인식기 모형의 성능에 얼마나 큰 영향을 끼치는지 알아보고, 성능 향상에 효과적인 데이터의 특징을 분석하였다. 본 연구를 통해서 개발된 상품 카탈로그 내 텍스트 인식모형과 훈련 데이터 자동 생성 프로그램은 온라인 쇼핑몰 판매자들의 상품 정보 등록 수고를 줄여줄 수 있으며, 구매자들의 상품 검색 시 결과의 정확성을 향상시키는 데 기여할 수 있을 것으로 기대한다.

웨이브렛 변환과 신경망 기반 얼굴 인식 (Facial Image Recognition Based on Wavelet Transform and Neural Networks)

  • 임춘환;이상훈;편석범
    • 대한전자공학회논문지TE
    • /
    • 제37권3호
    • /
    • pp.104-113
    • /
    • 2000
  • 본 연구에서는 웨이브렛 변환과 신경망 기반 얼굴 인식 알고리즘을 제안한다. 이 알고리즘은 일정한 조도 상태에서 두 개의 영상을 그레이 레벨로 취득하고 가우시안 필터를 이용하여 영상 내에 존재하는 잡음을 제 거한 후 배경영상과 얼굴이 포함된 입력영상의 차를 구하여 차영상에 대해 축소와 팽창과정을 통한 전처리 과정을 거치게 된다. 그리고 팽창 영상으로부터 마스크를 생성하여 마스크를 얼굴이 존재하는 원 영상에 투영하여 배경과 얼굴을 분할하고 분할된 얼굴영상의 에지를 조사하여 눈, 코, 입, 눈썹 그리고 뺨이 포함된 사 각 모양의 특징영역을 검출한다. 그리고 특징영역에 대해 이산 웨이브렛 변환을 수행하여 특징벡터를 추출하고 정규화한 후 신경망의 입력벡터로 하여 학습에 의한 인식을 수행한다. 시뮬레이션 결과 학습된 영상에 대해서는 100%의 인식률을 보였고 학습되지 않는 실험적 영상에 대해서도 92%의 인식률을 나타내었다.

  • PDF

연관법령 검색을 위한 워드 임베딩 기반 Law2Vec 모형 연구 (A Study on the Law2Vec Model for Searching Related Law)

  • 김나리;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권7호
    • /
    • pp.1419-1425
    • /
    • 2017
  • 법률 지식 검색의 궁극적 목적은 법령과 판례를 근거로 최적의 법례정보 획득이라고 할 수 있다. 최근, 대규모 자료에서 효율적으로 검색하여야 하는목적을 달성하기 위하여텍스트 마이닝 연구가 활발히 이루어지고 있다. 대표적인 방법으로 Neural Net 기반 학습방법인 워드 임베딩 알고리즘을 들 수 있다. 본 논문에서는 한국 법령정보를 워드임베딩에 적용하여 연관정보 검색방법을 연구하였다. 우선 판례의 참조법령을 순서대로 추출하여 모형의 입력정보로 활용하였다. 추출한 참조법령들은 중심법령을 기준으로 주변 법령을 학습하고 임베딩하는 Law2Vec 모형을 작성하였다. 이 모형으로 법령에 대하여 학습을 수행하고 법령 간의 관계를 추론하였다. 본 연구의 모형을 평가하기 위하여 연관법령으로 도출된 결과가 키워드와 밀접한 관련이 있는지 정밀도와 재현율을 계산하여 검증하였다. 실험결과, 본 연구의 제안방식이기존의 키워드 검색방법보다 연관된 법령을추론하는데유용함을 알 수 있었다.

캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘 (Self-optimizing feature selection algorithm for enhancing campaign effectiveness)

  • 서정수;안현철
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.173-198
    • /
    • 2020
  • 최근 온라인의 비약적인 활성화로 캠페인 채널들이 다양하게 확대되면서 과거와는 비교할 수 없을 수준의 다양한 유형들의 캠페인들이 기업에서 수행되고 있다. 하지만, 고객의 입장에서는 중복 노출로 인한 캠페인에 대한 피로감이 커지면서 스팸으로 인식하는 경향이 있고, 기업입장에서도 캠페인에 투자하는 비용은 점점 더 늘어났지만 실제 캠페인 성공률은 오히려 더 낮아지고 있는 등 캠페인 자체의 효용성이 낮아지고 있다는 문제점이 있어 실무적으로 캠페인의 효과를 높이고자 하는 다양한 연구들이 지속되고 있다. 특히 최근에는 기계학습을 이용하여 캠페인의 반응과 관련된 다양한 예측을 해보려는 시도들이 진행되고 있는데, 이 때 캠페인 데이터의 다양한 특징들로 인해 적절한 특징을 선별하는 것은 매우 중요하다. 전통적인 특징 선택 기법으로 탐욕 알고리즘(Greedy Algorithm) 중 SFS(Sequential Forward Selection), SBS(Sequential Backward Selection), SFFS(Sequential Floating Forward Selection) 등이 많이 사용되었지만 최적 특징만을 학습하는 모델을 생성하기 때문에 과적합의 위험이 크고, 특징이 많은 경우 분류 예측 성능 하락 및 학습시간이 많이 소요된다는 한계점이 있다. 이에 본 연구에서는 기존의 캠페인에서의 효과성 제고를 위해 개선된 방식의 특징 선택 알고리즘을 제안한다. 본 연구의 목적은 캠페인 시스템에서 처리해야 하는 데이터의 통계학적 특성을 이용하여 기계 학습 모델 성능 향상의 기반이 되는 특징 부분 집합을 탐색하는 과정에서 기존의 SFFS의 순차방식을 개선하는 것이다. 구체적으로 특징들의 데이터 변형을 통해 성능에 영향을 많이 끼치는 특징들을 먼저 도출하고 부정적인 영향을 미치는 특징들은 제거를 한 후 순차방식을 적용하여 탐색 성능에 대한 효율을 높이고 일반화된 예측이 가능하도록 개선된 알고리즘을 적용하였다. 실제 캠페인 데이터를 이용해 성능을 검증한 결과, 전통적인 탐욕알고리즘은 물론 유전자알고리즘(GA, Genetic Algorithm), RFE(Recursive Feature Elimination) 같은 기존 모형들 보다 제안된 모형이 보다 우수한 탐색 성능과 예측 성능을 보임을 확인할 수 있었다. 또한 제안 특징 선택 알고리즘은 도출된 특징들의 중요도를 제공하여 예측 결과의 분석 및 해석에도 도움을 줄 수 있다. 이를 통해 캠페인 유형별로 중요 특징에 대한 분석과 이해가 가능할 것으로 기대된다.

선인출 기반의 모바일 사전 (A Mobile Dictionary based on a Prefetching Method)

  • 홍순정;문양세;김혜숙;김진호;정영준
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권3호
    • /
    • pp.197-206
    • /
    • 2008
  • 모바일 인터넷 환경에서는 학습 내용을 검색 및 다운로드하기 위하여 모바일 기기와 서버 사이에 잦은 통신이 필요하다. 본 논문에서는 모바일 사전을 사용함에 있어서, 네트워크 비용을 절감하고 통신 효율을 높이기 위한 효율적인 선인출 기법을 제안한다. 이를 위해 본 논문에서는 다음 방법으로 연구를 전개한다. 첫째, 모바일 사전을 위한 선인출 기반의 동작 프레임워크를 제안한다. 둘째, 패킷 요금 방식과 정액 요금 방식으로 구분하여 선인출할 데이타의 양을 결정하는 방법을 제시한다. 셋째, 중 고등학생 대상의 모바일 영한사전에 초점을 맞춘 선인출 데이타 결정 방법을 제안한다. 넷째, 이러한 데이타 양 및 데이타 종류 결정 방법을 바탕으로 선인출 알고리즘을 제안한다. 다섯째, 실험을 통하여 제안한 선인출 방법의 우수성을 입증한다. 이 같은 연구에 따른 본 논문의 공헌은 다음과 같이 요약할 수 있다. 첫째, 선인출을 모바일 응용에 적용한 첫 번째 시도로서 의미를 갖는다. 둘째, 선인출을 모바일 사전에 적용하기 위한 체계적인 방법론을 제시하였다. 셋째, 선인출 적용을 통해 네트워크 기반 모바일 사전의 성능 향상을 도모하였다. 실제 실험 결과, 제안한 방법은 기존의 요구인출에 평균 $9.8%{\sim}33.2%$의 높은 성능 향상을 나타냈다. 이 같은 결과를 볼 때, 본 논문의 연구 결과는 모바일 사전뿐 아니라 선인출 기능을 필요로 하는 무선 인터넷 기반의 여러 응용에 적용될 수 있는 우수한 연구 결과라 사료된다.

Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구 (A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction)

  • 이재성;전승표;서진이
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.73-95
    • /
    • 2021
  • 본 연구는 Node2vec 그래프 임베딩 방법과 Light GBM 링크 예측을 활용해 우리나라 식음료 산업의 미개척 수출 후보국가를 탐색한다. Node2vec은 네트워크의 공통 이웃 개수 등을 기반으로 하는 기존의 링크 예측 방법에 비해 상대적으로 취약하다고 알려져 있던 네트워크의 구조적 등위성 표현의 한계를 개선한 방법이다. 따라서 해당 방법은 네트워크의 커뮤니티 탐지와 구조적 등위성 모두에서 우수한 성능을 나타내는 것으로 알려져 있다. 이에 본 연구는 이상의 방법을 우리나라 식음료 산업의 국제 무역거래 정보에 적용했다. 이를 통해 해당 산업의 글로벌 가치사슬 관계에서 우리나라의 광범위한 마진 다각화 효과를 창출하는데 기여하고자 한다. 본 연구의 결과를 통해 도출된 최적의 예측 모델은 0.95의 정밀도와 0.79의 재현율을 기록하며 0.86의 F1 score를 기록해 우수한 성능을 나타냈다. 이상의 모델을 통해 도출한 우리나라의 잠재적 수출 후보국가들의 결과는 추가 조사를 통해 대부분 적절하게 나타난 것을 알 수 있었다. 이상의 내용을 종합하여 본 연구는 Node2vec과 Light GBM을 응용한 링크 예측 방법의 실무적 활용성에 대해 시사할 수 있었다. 그리고 모델을 학습하며 링크 예측을 보다 잘 수행할 수 있는 가중치 업데이트 전략에 대해서도 유용한 시사점을 도출할 수 있었다. 한편, 본 연구는 그래프 임베딩 기반의 링크 예측 관련 연구에서 아직까지 많이 수행된 적 없는 무역거래에 이를 적용했기에 정책적 활용성도 갖고 있다. 본 연구의 결과는 최근 미중 무역갈등이나 일본 수출 규제 등과 같은 글로벌 가치사슬의 변화에 대한 빠른 대응을 지원하며 정책적 의사결정을 위한 도구로써 충분한 유용성이 있다고 생각한다.