Abstract
In this study, we propose facial image recognition based on wavelet transform and neural network. This algorithm is proposed by following processes. First, two gray level images is captured in constant illumination and, after removing input image noise using a gaussian filter, differential image is obtained between background and face input image, and this image has a process of erosion and dilation. Second, a mask is made from dilation image and background and facial image is divided by projecting the mask into face input image Then, characteristic area of square shape that consists of eyes, a nose, a mouth, eyebrows and cheeks is detected by searching the edge of divided face image. Finally, after characteristic vectors are extracted from performing discrete wavelet transform(DWT) of this characteristic area and is normalized, normalized vectors become neural network input vectors. And recognition processing is performed based on neural network learning. Simulation results show recognition rate of 100 % about learned image and 92% about unlearned image.
본 연구에서는 웨이브렛 변환과 신경망 기반 얼굴 인식 알고리즘을 제안한다. 이 알고리즘은 일정한 조도 상태에서 두 개의 영상을 그레이 레벨로 취득하고 가우시안 필터를 이용하여 영상 내에 존재하는 잡음을 제 거한 후 배경영상과 얼굴이 포함된 입력영상의 차를 구하여 차영상에 대해 축소와 팽창과정을 통한 전처리 과정을 거치게 된다. 그리고 팽창 영상으로부터 마스크를 생성하여 마스크를 얼굴이 존재하는 원 영상에 투영하여 배경과 얼굴을 분할하고 분할된 얼굴영상의 에지를 조사하여 눈, 코, 입, 눈썹 그리고 뺨이 포함된 사 각 모양의 특징영역을 검출한다. 그리고 특징영역에 대해 이산 웨이브렛 변환을 수행하여 특징벡터를 추출하고 정규화한 후 신경망의 입력벡터로 하여 학습에 의한 인식을 수행한다. 시뮬레이션 결과 학습된 영상에 대해서는 100%의 인식률을 보였고 학습되지 않는 실험적 영상에 대해서도 92%의 인식률을 나타내었다.