• Title/Summary/Keyword: leaking water

Search Result 92, Processing Time 0.022 seconds

A study on the flow behavior around shallow tunnels and its numerical modelling (천층터널 주변의 흐름거동 및 수치 해석적 모델링기법 연구)

  • Shin, Jong-Ho;Choi, Min-Gu;Kang, So-Ra;Nam, Taek-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.37-47
    • /
    • 2008
  • Design and construction of tunnels require understanding the influence of groundwater. Particularly, it is essential to know how the drainage conditions at the tunnel boundary affect flow behavior of ground adjacent to the tunnels. In this study flow behavior of a leaking tunnel was investigated using physical model tests for tunnel depths and various hydraulic boundary conditions. Particular concerns were given to flow lines toward tunnels. Test results showed that the boundary conditions hardly influence on flow patterns and time required to reach steady state conditions. It is revealed that with an increase in water depth, flow lines concentrated to the drain holes. The physical tests were numerically simulated. Numerical results showed that the flow behavior was represented appropriately by considering filter-drain hole drainage rather than boundary drainage all over the lining.

  • PDF

Effect of hydraulic lining-ground interaction on subsea tunnels (라이닝-지반 수리상호작용이 해저터널에 미치는 영향)

  • Shin, Jong-Ho;Park, Dong-In;Joo, Eun-Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • One of the most important design concerns for undersea tunnels is to establish design water load and flow rate. These are greatly dependent on the hydraulic factors such as water head, cover depth, hydraulic boundary conditions. In this paper, the influence of the hydraulic design factors on the ground loading and the inflow rate was investigated using the coupled finite element method. A horse shoe-shaped tunnel constructed 30 m below sea bottom was adopted to evaluate the water head effect considering various water depth for varying hydraulic conditions and relative permeability between lining and ground. The effect of cover depth was analysed for varying cover depth with the water depth of 60 m. The results were considered in terms of pore water pressure, ground loading and flow rate. Ground loading increases with an increase in water head and cover depth without depending on hydraulic boundary conditions. This points out that in leaking tunnels an increase in water depth increases seepage force which consequently increases ground loading. Furthermore, it is identified that an increase in water head and cover depth increases the rate of inflow and a decrease in the permeability ratio reduces the rate of inflow considerably.

  • PDF

Study on Dangerous Factors and Damage Pattern Analysis of Leaking Water from Water Purifiers (누수가 발생한 정수기의 위험요소 발굴 및 소손패턴 해석에 관한 연구)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.57-62
    • /
    • 2012
  • The purpose of this paper is to find dangerous factors of a water purifier when water leaks due to inappropriate use and analyze the patterns of damaged parts in order to provide data for the examination of the cause of the problem. If the water purifier is inspected and managed by a non-specialist, when the FLC(Float Level Controller) at the top is inclined, water leakage may occur to the water purifier. The leaked water flows onto the cables and hoses and enters the thermostat terminal, heater, PCB, power supply connection connector, etc., becoming a dangerous factor that may cause a system failure, fire, etc. Due to the water that entered the input terminal, low noise and white smoke were generated at first. However, the flame gradually propagated due to the continuous inflow of moisture. It was found that when moisture reached the PCB, a carbonized conductive path was formed at the varistor terminal, input terminal, semiconductor device terminal, etc., and the flame became larger, which might result in a fire. From the metal microscope analysis of a damaged condenser terminal, it was found that the amorphous structure unique to copper cable disappeared, and voids, boundary surface and disorderly fine particles occurred. Also, in the case of the connector into which moisture penetrated, fusion and deformation occurred at the cable connection clips. The result of analysis of the power supply cable connector using a thermal image camera showed that most of the heat was generated from the cable connection clips and the temperature at the connection center was normal.

Experimental Study on Prediction and Diagnosis of Leakage and Water Absorption in Water-Cooled Generator Stator Windings by Drying Process Analysis (수냉각 발전기 고정자 권선의 건조 과정 분석을 통한 누설 및 흡습 예측 진단에 관한 실험적 연구)

  • Kim, Hee-Soo;Bae, Yong-Chae;Lee, Wook-Ryun;Lee, Doo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.867-873
    • /
    • 2010
  • The failure of water-cooled generator stator windings as a result of insulation breakdown due to coolant water leaks and water absorption often occurs worldwide. Such failure can cause severe grid-related accidents as well as huge economic losses. More than 50% of domestic generators have been operated for over 15 years, and therefore, they exhibit signs of aging. Leaking and water-absorbing windings are often found during an overhaul. In an existing method for evaluating the integrity of generator stator windings, the drying process of the interior of the windings is ignored and only final leak tests are performed. In this study, it is shown that water leaks and water absorption in stator windings can be detected indirectly through vacuum pattern analysis in the vacuum drying mode, which is the used in the preparation stage of the leak test.

An Experimental Study of Water Vapor Pressure Change by Ambient Temperature at the Interface between Concrete and Fluid-Applied Membrane Layer

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo;Lee, Mun-Hwan;Lee, Sung-Bok
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Over about 30% of problems in construction is related to water-leaking, and the loss from this problem can incur as much as three times the cost of initial construction. Thus, water vapor pressure is known to be the primary cause of defective waterproofing. Accordingly, the theories on the relationship between water pressure and temperature as well as damp-proofing volume of concrete and the change in vapor pressure volume were reviewed and analyzed in this study by making test samples after spraying a dampness remover and applying waterproofing materials to the prepared test specimens. The result of measuring water vapor pressure with the surface temperature of the waterproofing (fluid-applied membrane) layer at the experimental temperature setting of about $10^{\circ}C$, which is the annual average temperature of Seoul, indicated that (1) the temperature of the fluid-applied membrane elevated to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about 0.03 N/mm 2 when the surface temperature of the waterproofing layer was raised to about $80^{\circ}C$. (2) when the temperature of the fluid-applied membrane of the waterproofing layer was raised from $30^{\circ}C$ to $35^{\circ}C$, water vapor pressure of about 0.01 N/mm 2 was generated, and (3) when a thermal source was applied to the fluid-applied membrane (waterproofing) layer, the temperature increased from $35^{\circ}C$ to $40^{\circ}C$, and approximately $0.005\;N/mm^2$ of water vapor pressure was generated.

Structural Analysis of Hydraulic Valve Meter (밸브 수압측정기의 구조해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1447-1452
    • /
    • 2012
  • Existing hydraulic valve meter used in industrial fields precise pressure measurement gives inconvenience in precise measurement due to manually regulated pressures. In order to improve this inconvenience, the hydraulic valve meter was designed by using automatic design program CATIA and structural analysis of the designed hydraulic valve meter was conducted and internal water leaking, stress, strain and total deformation were obtained by applying three dimensional finite element code ANSYS. These results will be provided to develop new concepts of hydraulic valve meters as fundamental data.

A Batch Study on BTEX and MTBE Biodegradation by Denitrifiers under Aerobic and Anaerobic Conditions

  • 오인석;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.467-470
    • /
    • 2003
  • Leaking underground storage tanks are a major source of groundwater contamination by petroleum hydrocarbons. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Nitrate can also serve as an electron acceptor and results in anaerobic biodegradation of organic compounds via the processes of nitrate reduction and denitrification. Because nitrate is less expensive and more soluble than oxygen. it may be more economical to restore fuel-contaminated aquifers using nitrate rather than oxygen. And denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. These studies have shown that BTEX and MTBE can be degraded by the nitrate-amended microcosms under aerobic and anaerobic conditons. Biodegradation of the toluene and ethylbenzne compounds occurred very quickly under denitrifying conditions. MTBE, benzene and p-xylene were recalcitrant under denitrifying conditions in this study, But finally Biodegradaton was observed for all of the test compounds.

  • PDF

Measurements of Carcinogenic Air Pollutants in Seoul Metropolitan Subway Stations (서울시 일부 지하철역내 대기오염물질에 대한 조사연구)

  • 김윤신;신응배;김신도;김동술;전준민
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.19-27
    • /
    • 1994
  • This paper reports an investigation of concentrations major carcinogenic indoor air pollutants for radon, formaldehyde, and asbestos in the 83 subway stations in the Seoul metropolitan area during November 1991~September 1992. Mean concentrations of indoor pollutants in Seoul subway stations surveyed were 0.23 ppb for formaldehyde, 1.12 pCi/l for radon, and 0.008 fiber/cc for asbestos. Mean formaldehyde concentrations in 83 subway stations were below the U.S. EPA formaldehyde standard (100 ppb), whereas mean concentrations of radon and asbestos in 2% and 22% of total sampled subway stations exceeded the U.S. radon (4 pCi/l) and asbestos (0.01 fiber/cc) standand, respectively. It is likely that possible sources for radon and asbestos are radon intrusion from the leaking underground water and construction materials, respectively.

  • PDF

Damage of Gyeongju 9.12 Earthquakes and Seismic Design Criteria for Nonstructural Elements (경주 9.12지진의 피해 및 비구조요소 내진설계기준)

  • Lee, Su Hyeon;Cho, Tae Gu;Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.561-567
    • /
    • 2016
  • After the Gyeong-ju 9.12 earthquake, we found the necessity of seismic design of nonstructural element is important to reduce damages in view of properties and economic losses. This study focused on the investigation of damages including both properties and human beings. It was found that most of the damages are leaking of water pipe line, rupture of glasses, spalling of roof finishing, cracks of building, and falling from roof. It was also found that the seismic design force of nonstructural elements is taking account into the natural periods, amplification factors, response modification factors to forsee inelastic behaviors. From this studies, it is recommended that more studies are necessary on the seismic design force of nonstructural element.

Behavior Analysis of High Pressure Valve Tester (고압용 밸브시험기의 거동해석)

  • Lee, Jong-sun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.149-154
    • /
    • 2019
  • High pressure valve tester used in industrial fields precise measurement gives inconvenience in precise measurement due to manually regulated pressures. In order to improve this inconvenience, the high pressure valve tester was designed by using CATIA and structural analysis of the designed high pressure valve tester was conducted and water leaking, total deformation, strain and stress were obtained by applying ANSYS. These results will be provided to develop new concepts of high pressure valve tester as initial data.