• Title/Summary/Keyword: leakage rate

Search Result 913, Processing Time 0.032 seconds

A Numerical Analysis on Thermal Stratification Phenomenon by In-Leakage in a Branch Piping

  • Park Jong-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2245-2252
    • /
    • 2005
  • Thermal stratification in the branch piping of power plants can be generated by turbulent penetration or by valve leakage. In this study, a numerical analysis was performed to estimate the thermal stratification phenomenon by in-leakage in the SIS branch piping of nuclear power plant. Leakage rate, leakage area and leakage location were selected as evaluation factors to investigate the thermal stratification effect. As a result of the thermal stratification effect according to leakage rate, the maximum temperature difference between top and bottom of the horizontal piping was evaluated to be about 185K when the valve leakage rate was about 10 times as much as the allowed leakage rate. For leakage rate more than 10 times the allowed leakage rate, the temperature difference was rapidly decreased due to the increased mixing effect. In the result according to leakage area, the magnitude of temperature difference was shown in order of $3\%,\;1\%\;and\;5\%$ leakage area of the total disk area. In the thermal stratification effect, according to the leakage location, temperature difference when leakage occurred in the lower disk was considerably higher than that of when leakage occurred in the upper disk.

A Study on the Measurement Method of Leakage Flow-rate for Pneumatic Cylinder (공압실린더의 누설유량 계측방법에 관한 연구)

  • Jang J.S.;Ji S.W.;Jeong J.H.;Kang B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2006
  • In this study, a measurement method of leakage flow-rate for pneumatic driving apparatus is proposed. The existing measurement methods of leakage flow-rate of air need disassemble the test component. Therefore, there is no effective method to measure the leakage flow-rate while operating pneumatic driving apparatus. In this study, the leakage flow-rate is measure from the pressure change in an isothermal chamber that can realize isothermal conditions by stuffing steel wool into it. Therefore, wide range of flow-rate could be measured only from the pressure response and the leakage flow-rate can be measured during operating pneumatic driving apparatus. The effectiveness of the proposed method is proved by experimental results.

  • PDF

A Study on the Measurement Method of Leakage for Pneumatic Cylinder (공기압실린더의 누설유량 계측에 관한 연구)

  • Jang, J.S.;Ji, S.W.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.98-102
    • /
    • 2007
  • In this study, a measurement method of leakage flow-rate for pneumatic driving apparatus is proposed. The existing measurement methods of leakage flow-rate of air need disassemble the test component. Therefore, there is no effective method to measure the leakage flow-rate while operating pneumatic driving apparatus. In this study, the leakage flow-rate is measured from the pressure change in an isothermal chamber that can realize isothermal conditions by stuffing the steel wool into it. Therefore, a wide range of flow-rate could be measured only from the pressure response and the leakage flow-rate can be measured during operating pneumatic driving apparatus. The effectiveness of the proposed method is proved by experimental results.

  • PDF

Study on Statistical Analysis of Measured Fluid Leakage Data and Estimation of the Leakage Rate for Power Plant Valve (발전용 밸브 유체누설 측정 데이터의 통계적 평가 및 누설량 예측 연구)

  • Lee, S.G.;Kim, D.W.;Kim, Y.S.;Park, J.H;Jeong, H.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.59-66
    • /
    • 2009
  • High temperature and pressure valves in power plant have been used for fluid flowing and leakage occurred owing to valve internal damage such as disc wear, crack and inserting of foreign objects etc. in these valves. Recently, multi-measuring technique applied both ultrasonic and acoustic method have been used for evaluation of valve internal leakage in order to raise measurement reliability. Therefore, we have performed various leakage tests using ultrasonic and acoustic measuring system and acquired leakage data for the various leakage conditions. In this study, we developed the estimation method of regression model through leakage data, and expectation method for valve opening ratio, which is directly proportion to leakage rate, using the established estimation model from the measured data, valve size and fluid pressure so as to enhance data reliability. As a result of this study, it was founded that expectation method of leakage rate by statistical analysis method is appropriate to valve leakage evaluation.

  • PDF

An Experimental Study on Air Leakage and Heat Transfer Characteristics of a Rotary-type Heat Recovery Ventilator (회전식 폐열회수 환기유닛의 공기누설 및 전열특성에 관한 실험적 연구)

  • Han Hwataik;Kim Min-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1197-1203
    • /
    • 2004
  • This study investigates the air leakage and heat transfer characteristics of a rotary-type air-to-air heat exchanger with a fiber polyester matrix. The leakage airflow rate is measured using a tracer gas method for various ventilation rates and rotational speeds of the matrix wheel. A correlation equation for air leakage is obtained by combining the pressure leakage and the carryover leakage. The pressure leakage is observed to be a function of ventilation airflow rate only, and the carryover leakage is found to be a linear function of rotational speed. The real efficiency of the heat exchanger can be obtained from its apparent efficiencies by taking into account the air leakage ratio. As the ventilation rate increases, the heat recovery efficiency decreases. As the rotational speed of the matrix increases, the efficiency increases initially but reaches a constant value for the rotational speeds over 10 rpm.

An Experimental Study on the Leakage Characteristics of a Labyrinth Seal (Labyrinth Seal 의 누설 특성 실험)

  • 하현천;변형현;박철현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.141-146
    • /
    • 1999
  • An experimental investigation on the leakage characteristics of a labyrinth seal, high-low seal, is studied. Pressure distribution and leakage flow rate are measured along with the shaft speed and the pressure difference between the entrance and the exit. Pressure distribution vanes almost linearly along the seal and the leakage flow rate increases as the increase of the pressure difference. Furthermore, it is found that both the shaft speed and the shaft vibration have no influence on the leakage of the labyrinth seal.

  • PDF

Analysis of the Axial Thrust Force of a Centrifugal Impeller with a Thrust Labyrinth Seal at its Backside (스러스트 래버린스 실을 배면에 갖는 원심형 임펠러의 축력 해석)

  • Park, Jun Hyuk;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • This study describes the effects of a thrust labyrinth seal applied to the backside of a centrifugal impeller on the axial thrust force for high speed turbomachinery. The bulk flow model using Neumann's equation calculates the seal cavity pressures and leakage flow rate of the thrust labyrinth seal based on three configurations: teeth-on-rotor (TOR), teeth-on-stator (TOS), and interlocking labyrinth seal (ILS). Prediction results show that the ILS is superior to the TOR and TOS in terms of leakage flow rate. A mathematical model of a centrifugal impeller with a thrust labyrinth seal on its backside calculates the force components corresponding to the impeller inlet, shroud, impeller backside outer, backside seal, and backside inner pressures. A summation of the force components renders the total axial thrust force acting on the centrifugal impeller. The Newton-Raphson numerical scheme iteratively calculates the pressures and leakage flow rate through the impeller wall gap. The prediction results reveal that the leakage flow rate and total axial thrust force increase with rotor speed, and the ILS significantly decreases the leakage flow rate, whereas it slightly increases the axial thrust force when compared to TOR and TOS. Increasing the seal clearance causes an increase in the leakage flow rate and a slight decrease in the axial thrust force with the ILS.

Evaluation of Prediction Methods for Containment Integrated Leakage Rate (격납건물 종합누설률 예측방법 평가)

  • Yang, Seung-Ok;Lee, Kwang-Dae;Oh, Eung-Se
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.562-564
    • /
    • 2004
  • The containment leakage rate test performed on the nuclear power plants consists of following phases : pressurizing the containment, stabilizing the atmosphere, conducting a Type A test, conducting a verification test, depressurizing the containment. It takes more than 48 hours from the pressurization to the depressurization and the prediction of the results will help to prepare the next test phase. In this paper, to predict the leakage rate, the prediction methods based on the least square method are evaluated according to the input variables and the measurement period.

  • PDF

Excessive Leakage Measurement Using Pressure Decay Method in Containment Building Local Leakage Rate Test at Nuclear Power Plant (원전 격납건물 국부누설률시험에서의 압력감소법을 이용한 과다누설 측정 방법)

  • Lee, Won Kyu;Kim, Chang Soo;Kim, Wang Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.231-235
    • /
    • 2016
  • There are two methods for conducting the containment local leakage rate test (LLRT) in nuclear power plants: the make-up flow rate method and the pressure decay method. The make-up flow rate method is applied first in most power plants. In this method, the leakage rate is measured by checking the flow rate of the make-up flow. However, when it is difficult to maintain the test pressure because of excessive leakage, the pressure decay method can be used as a complementary method, as the leakage rates at pressures lower than normal can be measured using this method. We studied the method of measuring over leakage using the pressure decay method for conducting the LLRT for the containment building at a nuclear power plant. We performed experiments under conditions similar to those during an LLRT conducted on-site. We measured the characteristics of the leakage rate under varies pressure decay conditions, and calculated the compensation ratio based on these data.

An Experimental Study on Air Leakage and Heat Transfer Characteristics of a Rotary-type Heat Recovery Ventilator

  • Han, Hwa-Taik;Kim, Min-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • This study investigates the air leakage and heat transfer characteristics of a commercially available rotary-type air-to-air heat exchanger with a fiber polyester matrix. Crossover leakage between the exhaust and supply air is measured using a tracer gas method for various ventilation rates and rotational speeds of the wheel. A correlation equation for the leakage is obtained by summing up pressure leakage and carryover leakage. The pressure leakage is observed to be a function of ventilation rate only, and the carryover leakage is found to be a linear function of wheel speed. The real efficiency of the heat exchanger can be obtained from its apparent efficiency by taking into account the leakage ratio. The heat recovery efficiency decreases, as the ventilation rate increases. As the wheel speed increases, however, the efficiency increases initially but reaches a constant value for the speeds over 10rpm.