• 제목/요약/키워드: leakage current density vs electric field

검색결과 4건 처리시간 0.018초

Thermal Oxidation 법으로 제조된 $Ta_2O_5$ 박막의 유전체 물성에 관한 연구 (The study on dielectric properties of $Ta_2O_5$ thin films obtained by thermal oxidation)

  • 김인성;김현주;민복기;송재성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1473-1475
    • /
    • 2002
  • This study presents the dielectric properties of $Ta_2O_5$ MIM capacitor structure processed by thermal oxidation. The AES(auger electron emission) depth profile showed thermal oxidation effect gives rise to the $O_2$ deficiened into the new layer. The leakage current density respectively, at $1{\sim}3{\times}10^{-3}$(kV/cm) were $3{\times}10^{-4}-10^{-8}(A/cm^2)$. Leakage current density behavior is stable irrespective of applied electric field, the frequency va capacitance characteristic enhanced stability. The capacitance vs voltage measurement that, $V_{fb}$(flat-band voltage) was increase dependance on the thin films thickness, it is changed negative to positive.

  • PDF

Dielectric Properties of $Ta_2O_{5-X}$ Thin Films with Buffer Layers

  • Kim, In-Sung;Song, Jae-Sung;Yun, Mun-Soo;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제12C권4호
    • /
    • pp.208-213
    • /
    • 2002
  • The present study describe the electrical performance of amorphous T $a_2$ $O_{5-X}$ fabricated on the buffer layers Ti and Ti $O_2$. T $a_2$ $O_{5-X}$ thin films were grown on the Ti and Ti $O_2$ layers as a capacitor layer using reactive sputtering method. The X-ray pattern analysis indicated that the two as-deposited films were amorphous and the amorphous state was kept stable on the RTA(rapid thermal annealing) at even $700^{\circ}C$. Measurements of dielectric properties of the reactive sputtered T $a_2$ $O_{5-X}$ thin films fabricated in two simple MIS(metal insulator semiconductor), structures, (Cu/T $a_2$ $O_{5}$ Ti/Si and CuT $a_2$ $O_{5}$ Ti $O_2$Si) show that the amorphous T $a_2$ $O_{5}$ grown on Ti showed high dielectric constant (23~39) and high leakage current density(10$^{-3}$ ~10$^{-4}$ (A/$\textrm{cm}^2$)), whereas relatively low dielectric constant (~15) and tow leakage current density(10$^{-9}$ ~10$^{-10}$ (A/$\textrm{cm}^2$)) were observed in the amorphous T $a_2$ $O_{5}$ deposited on the Ti $O_2$ layer. The electrical behaviors of the T $a_2$ $O^{5}$ thin films were attributed to the contribution of Ti- $O_2$ and the compositionally gradient Ta-Ti-0, being the low dielectric layer and high leakage current barrier. In additional, The T $a_2$ $O_{5}$ Ti $O_2$ thin films exhibited dominant conduction mechanism contributed by the Poole-Frenkel emission at high electric field. In the case of T $a_2$ $O_{5}$ Ti $O_2$ thin films were related to the diffusion of Ta, Ti and O, followed by the creation of vacancies, in the rapid thermal treated thin films.films.

Electrical Properties of (Ba, Sr)TiO$_3$ Thin Film Deposited on RuO$_2$Electrode

  • Park, Chi-Sun;Kim, In-Ki
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권4호
    • /
    • pp.30-39
    • /
    • 2000
  • The variation of electrical properties of (Ba, Sr)TiO$_3$[BST] thin films deposited of RuO$_2$electrode with (Ba+Sr)/Tr ration was investigated. BST thin films with various (Ba+Sr)/Tr ration were deposited on RuO$_2$/Si substrates using in-situ RF magnetron sputtering. It was found that the electrical properties of BST films depends on the composition in the film. The dielectric constant of the BST films is about 190 at the (Ba+Sr)/Tr ration of 1.0, 1,025 and does not change markedly. But , the dielectric constant degraded to 145 as the (Ba+Sr)/Tr ratio increase to 1.0. In particular, the leakage current mechanism of the films shows the strong dependence on the (Ba+Sr)/Tr ration in the films. At the ration (Ba+Sr)/Tr=1,025, the Al/BST/RuO$_2$ capacitor show the most asymmetric behavior in the leakage current density, vs, electric field plot. It is considered that the leakage current of the (Ba+Sr)/Tr=1,025 thin films is controlled by the battier-Iimited process, i,e, Schottky emission.

  • PDF

$O_2$RTA 방법으로 제조된 $Ta_2O_{5-x}$ 박막의 전기적 특성 (A Study on Electrical Properties of $Ta_2O_{5-x}$ Thin-films Obtained by $O_2$ RTA)

  • 김인성;송재성;윤문수;박정후
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권8호
    • /
    • pp.340-346
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and integration of passive devices requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. common capacitor materials, $Al_2O_3$, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$, TaN and et al., used until recently have reached their physical limits in their application to integration of passive devices. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism. This study presents the dielectric properties $Ta_2O_{5}$ MIM capacitor structure Processed by $O_2$ RTA oxidation. X-ray diffraction patterns showed the existence of amorphous phase in $600^{\circ}C$ annealing under the $O_2$ RTA and the formation of preferentially oriented-$Ta_2O_{5}$ in 650, $700^{\circ}C$ annealing and the AES depth profile showed $O_2$ RTA oxidation effect gives rise to the $O_2$ deficientd into the new layer. The leakage current density respectively, at 3~1l$\times$$10_{-2}$(kV/cm) were $10_{-3}$~$10_{-6}$(A/$\textrm{cm}^2$). In addition, behavior is stable irrespective of applied electric field. the frequency vs capacitance characteristic enhanced stability more then $Ta_2O_{5}$ thin films obtained by $O_2$ reactive sputtering. The capacitance vs voltage measurement that, Vfb(flat-band voltage) was increase dependance on the $O_2$ RTA oxidation temperature.