• Title/Summary/Keyword: leaf temperature

Search Result 1,234, Processing Time 0.038 seconds

Changes of Aroma and Volatile Components of Korean Leaf Tobaccos from a Different Stalk Positions (국산 원료잎담배의 착엽위치에 따른 향기성분 및 휘발성 성분의 변화)

  • Hwang Keon- Jung;Rhee Moon-Soo;Kim Chung Ryul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.127-133
    • /
    • 2005
  • This study was conducted to determine the aroma and volatile component changes from a different stalk positions of Korean flue-cured tobacco. Eight different stalk positions of flue-cured leaf tobaccos harvested in 2001 were used for this study. Thermal extraction method at two different treatment temperature($50\;amp;\;80^{\circ}C$) was applied for this experiment. Forty eight kinds of aroma and volatile components such as 2,4-heptadienal, hexadecane, 1-methyl-1H- pyridine, 2,5-dimethyl-1H-pyrrole were analyzed by using thermal extraction method. All of aroma and volatile components of leaf tobaccos were changed from a different stalk positions and treatment temperature. Leaf tobaccos in middle stalk position have a higher concentration of aroma and volatile components such as norsolanidione, 4-pyridinecarboxaldehyde, 4-methyl-4-OH-2-pentanone, acetic acid, propylene glycol, 1-methyl-2-pyrrolidinone, 2,5-dimethyl-1H-pyrrole. Also, Megastigmatrienone 1, 3-oxo-[alpha]­ionol, 6,10,14-trimethyl-2-pentadecanone, heptadecane, 6-methyl-2-isohexyl-l-heptene concentration were low in the middle stalk position and high in both bottom and upper position. Treatment temperature affected on the changes of many aroma and volatile components in leaf tobacco. Most of aroma and volatile components such as, 2,4-Heptadienal, dodecanoic methylester, famesol isomer and 3-acetylpyridine were sharply increased as increasing treatment temperature. This results can be used to estimate the aroma characteristics of cigarette blend using a different stalk position of leaf tobacco.

Dyeing Properties and Storage Stability of Leaf Powder Prepared from Dyer's Knotweed(II) - by Hot Air and Room Temperature Drying Methods - (생쪽잎분말의 염색성 및 저장성(II) - 열풍 및 상온건조방법 -)

  • Shin, Youn-Sook;Son, Kyung-Hee;Yoo, Dong-II
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.23-32
    • /
    • 2009
  • The objective of this study is to investigate the efficacy of leaf powder colorants as substitutes for traditional indigo dyeing. Leaf powder colorants were prepared by hot air($50^{\circ}C$) and room temperanrre($25^{\circ}C$) drying methods from fresh leaves. The presence of indigo in the leaf powder colorants was confirmed by UV/Visible absorption spectra. All the powder colorants showed broad absorption at 602 nm as same as synthetic indigo. Dyeing was done by reduction method with sodium hydrosulfite and sodium hydroxide. Leaf powder colorants produced blue color on silk fabrics, showing similar color to the one dyed traditionally with fresh juice extract. The powder colorants prepared at room temperature drying were more stable for long term storage than that prepared by hot air drying. Thus, the powder colorants prepared by room temperature drying was reduced and dyed in one-step process without sodium hydroxide in the dyebath for further investigate dyeing properties. K/S value of the fabric dyed without sodium hydroxide was much higher than one dyed with sodium hydroxide. Regardless of the addition of sodium hydroxide, rubbing fastness was fairly good showing above 4 rating. Fastness to dry cleaning and light of the fabrics dyed without sodium hydroxide were mote higher than that dyed in alkaline condition.

Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses (시설내 대기 온도와 방울토마토 잎 온도가 온실가루이(Trialeurodes vaporariorum)개체군 발달에 미치는 영향 비교)

  • Park, Jung-Joon;Park, Kuen-Woo;Shin, Key-Il;Cho, Ki-Jong
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.420-432
    • /
    • 2011
  • Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.

Changes in Air Temperature and Surface Temperature of Crop Leaf and Soil (기온과 작물 잎 및 토양 표면온도의 변화양상 분석)

  • Lee, Byung-Kook;Jung, Pil-Kyun;Lee, Woo-Kyun;Lim, Chul-Hee;Eom, Ki-Cheol
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.209-221
    • /
    • 2015
  • Temperature is one of the most important factors affecting crop growth. The diurnal cycle of the scale factor [Tsc] for air temperature and the surface temperature of crop leaf and soil could be estimated by the following equation : $[Tsc]=0.5{\times}sin(X+C)+0.5$. The daily air temperature (E[Ti]) according to the E&E time [X] can be estimated by following equation using average (Tavg), maximum (Tm) and minimum (Tn) temperature : $E[Ti]=Tn+(Tm-Tn){\times}[0.5{\times}sin\;\{X+(9.646Tavg+703.65)\}+0.5]$. The crop leaf temperature in 24th June 2014 was high as the order of red pepper without mulching > red pepper with mulching > soybean under drought > soybean with irrigation > Chinese cabbage. The case in estimating crop leaf surface temperature using air temperature and soil surface temperature was lower in the deviation compared to the case using air temperature for Chinese cabbage and red pepper. These results can be utilized for the crop models as input data with estimation.

Occurrence and Pathogenicity of Pythium Species Isolated from Leaf Blight Symptoms of Turgrasses at Golf Courses in Korea

  • Kim, Jin-Won;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.15 no.2
    • /
    • pp.112-118
    • /
    • 1999
  • Eleven species of Pythium were isolated from leaf blight symptoms on creeping bentgrass (Agrostis palustirs Huds.), Kentucky bluegrass (Poa pratenisis L.) and zoysiagrasses (Zoysia japonica Steud., and Z. matrella (L.) Merr.) planted on golf courses in Korea. Mycelial growth on potato carrot agar medium under various temperature conditions indicated that Pythium species obtained in this study could be divided into four groups based on their responses to temperature conditions. P. vanterpoolii was found to favor low temperature conditions with the optimum temperature of $25^{\circ}$, whereas P. aphanidermatum and P. myriotylum favored relatively high temperature conditions with the optimum temperature of $35^{\circ}$. Other species including P. arrhenomanes, P. catenulatum, P. graminicola, P. oligandrum, P. rostratum, P. torulosum, and P. ultimum were the intermediate group with the optimum temperature of 25~$35^{\circ}$. P. periplocum was similar to the intermediate group but the minimum temperature for its mycelial growth was $15^{\circ}$, which was approximately $5^{\circ}$ above that for the intermediate Pythium spp.group. In the pathogenicity tests conducted in the lab using potted plants, P. aphanidermatum, P.a arrhenomanes, P. catenulatum, P. graminicola, P. myriotylum, P. periplocum, P. rostratum, P. torulosum, P. ultimum, and P. vanterpoolii were found to be pathogenic to creeping bentgrass and Kentucky bluegrass. P. aphanidermatum, P. catenulatum, and P. graminicola were frequently isolated from leaf blight symptoms of creeping bentgrass and Kentucky bluegrass in golf courses during the warm and humid periods in July-August. On the other hand, P. vanterpoolii and P. torulosum were frequently isolated during the cool and humid periods in March-May, suggesting both species might be the major causes of leaf blight occurring in the spring time. Zoysiagrass was susceptible to P. arrhenomanes and the heterothallic Pythium sp. (Ht-F), showing stem and crown rot of turf-grasses at poorly drained areas under coool and humid or rainy conditions. P. oligandrum and the heterothallic Pythium sp. (Ht-L) isolated from creeping bentgrass were avirulent to all species of turfgrasses tested in this study.

  • PDF

Quality Characteristics of Sponge Cake with Added Lotus Leaf Powder (연잎 분말을 첨가한 스펀지케이크 품질특성)

  • Song, Young-Kwang
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.6
    • /
    • pp.651-656
    • /
    • 2013
  • In this study, to explore the use of lotus leaf powder, quality characteristics of sponge cake manufactured with different levels of lotus leaf power were investigated. We discovered that the pH, gravity, and cooling temperature of sponge cake increased as the content of lotus leaf power additive increased compared with those of the control group. Likewise, L and b levels of sponge cake increased with increasing level of lotus leaf power; 20% lotus leaf powder appeared to show the highest L and B levels, but levels were lower than those of the control group. Sponge cake levels of hardness, springiness, and cohesiveness increased as the amount of lotus leaf powder additive increased. In sensory evaluation, overall acceptability of 5% lotus leaf powder was the highest. Thus, it is possible to develop sponge cake with improved health-oriented aspects by addition of 5% lotus leaf powder.

Sap Temperature Distribution of the Xylem and Leaf Water Status of Apple Trees in Relation to Soil Oxygen Diffusion Rates

  • Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.170-175
    • /
    • 2000
  • A pot-lysimeter experiment was conducted with 3-year-old 'Tsugaru' apple (Malus domestica Borkh) trees to examine the changes in oxygen diffusion rate (ODR) with lateral flow velocity of water through soil. The influence of lateral water flow velocity on water relations and elemental content in leaf, and sap temperature distribution patterns of the xylem of trees were also determined. Trees were grown under four soil water regimes: (1) fast laterally flowing (FWT, $2.50{\times}10^{-4}cm\;s^{-1}$), (2) slow laterally flowing (SWT, $0.25{\times}10^{-4}cm\;s^{-1}$), and (3) stagnant water table (WLT) at 60-cm, and (4) drip-irrigation at -40 kPa of soil matric potential as a control. The rate of $O_2$ diffusion converged near $2{\times}10^{-3}g\;m^{-2}\;min^{-1}$ for FWT and control soils, but decreased below $1{\times}10^{-3}g\;m^{-2}\;min^{-1}$ 40 days after treatment (DAT) for WLT soils. For SWT soils, however, the ODR at 15 cm below the soil surface was similar to that of control, but at 45 cm below the soil surface, ODR was similar to that of the WLT treatment. Leaf water potential of FWT and SWT plants was similar to that of control plants, but the values for SWT plants declined by 98 DAT. Leaf water potential of WLT plants decreased from -1.86 MPa (9 DAT) to -2.41 MPa (59 DAT) and finally down to -2.70 MPa. The sap temperature measured at 1100-hr was lowest at top and highest at bottom for FWT and control plants, but this pattern of SWT and WLT plants was disturbed from 29 DAT. However, for SWT plants, such thermal disturbance of sap temperature disappeared from 63 DAT.

  • PDF

Morphological Characteristics of Ginseng Leaves in High-Temperature Injury Resistant and Susceptible Lines of Panax ginseng Meyer

  • Lee, Joon-Soo;Lee, Kyung-Hwan;Lee, Sung-Sik;Kim, Eun-Soo;Ahn, In-Ok;In, Jun-Gyo
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.449-456
    • /
    • 2011
  • Plant leaf cuticle is related to the prevention of moisture loss, transpiration, and diffusion of light reflection. The purpose of this study was to examine the morphological characteristics of ginseng leaves in ginseng plants resistant and susceptible to hightemperature injury (HTI) to be related with the leaf-burning. For the HTI resistant lines Yunpoong, high-temperature injury resistance (HTIR) 1, HTIR 2, and HTIR 3, and the HTI-susceptible line Chunpoong, the cuticle densities were 53.0%, 46.2%, 44.9%, 48.0%, and 17.0%; the adaxial leaf cuticle layers were 141.3, 119.7, 119.7, 159.4, and 85.0 nm in thickness; the abaxial leaf cuticle layers were 153.6, 165.8, 157.9, 199.6, and 119.4 nm in thickness; and the stomtal lengths were 21.7, 32.4, 29.4, 30.9, and $21.8{\mu}m$, respectively. All of these aspects suggest that HTI resistant lines have higher cuticle density, thickicker adaxial and abaxial leaf cuticle layers, and longer of stomta length than the HTI-susceptible line, protecting leaves from moisture loss and excessive transpiration under high temperatures to be resistant against the leaf-burning.

Varietal Evalution of Resistance and Developing Conditions on Sesame Disease (참깨 주요 병해의 저항성 품종 선발과 발병환경구명)

  • 김흥배;김용욱
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.1
    • /
    • pp.67-71
    • /
    • 1984
  • These experiments were conducted at field and green house in order to screen the resistant sesame varieties to Phytopthora nicotianae var. parasitica. and to ascertain the infection conditions of Corynespora cassiicola at different temperatures, soil moistures and leaf stages. Most of varieties studied in this experiment were very susceptible to the Phytopthora blight. Orotall, Suweon 7, Suweon 27 and Jochiweon were resistant to the disease. PI280795 and IS103 showed a tendency to be morderately resistant. The infected areas by Corynespora leaf blight were 15% in Kwangeui and 25% in Kimpo variety at high temperature condition of 3$0^{\circ}C$, respectively. The infection areas were 50% in Kwangeui and 70% in Kimpo variety at low temperature condition of 17$^{\circ}C$. These results indicate that the development of the leaf blight was highly increased at low temperature. The infection areas by the Corynespora were 55% in Kwangeui and 80% in Kimpo at wet soil moisture condition, and 10% in Kwageui and 15% in Kimpo at dry condition, respectively. The infection of the leaf blight was highly increased at 6 leaf stage and flowering date compared to at 10 and 20 leaf stages. The infection ratios were 20% at 6 leaf stage and 52.5% at flowering date, respectively.

  • PDF

Changes in Growth Characteristics of Waxy Corn 'Ilmichal' due to Low Temperature during the Seedling Stage (일미찰옥수수의 유묘기 저온에 따른 생육특성 변화)

  • Jeon, Seung Ho;Oh, Seung Ka;Kim, Han Yong;Na, Chae-In;Bae, Hui Su;Cho, Young Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.426-435
    • /
    • 2020
  • To determine the damages to waxy corn caused by low temperature weather, we investigated the relationship between the temperature and duration of low temperature treatment and the changes in growth characteristics during the recovery period after the treatments in different growth periods. Growth inhibition started in the low temperature group treated at temperatures below 5℃ for three days. The inhibition ratio (IR) was more than 22% or more in all sample groups. As the treatment duration increased and the Temperature decreased, the growth was more greatly inhibited than that in the control. The IR was the highest at 27% or more in the 2nd leaf stage group treated at below 5℃ for 5 days. The IR was in the order of 2nd leaf stage > 1st leaf stage > coleoptile. The IR during recovery was the highest in the 2nd leaf stage group treated at -3℃ degree for 7 days, nd the values were 82% and 98% for NDVI and Fv/Fm, respectively. Especially, all groups treated at -3℃ showed either no changes or decreases in the growth characteristics. As a result, growth inhibition increased as the temperature decreased, and as the duration of the low temperature increased. The degree of damage was in the order of 2nd leaf stage > 1st leaf stage > coleoptile. All early seedlings stopped growing and withered when exposed to temperatures at or below -3℃ for 3 days or more.