• Title/Summary/Keyword: leaf rolling

Search Result 36, Processing Time 0.034 seconds

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.17-17
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE_CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P)>7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.243-243
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P) >7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

Evaluation of Drought Tolerance in Maize Seedling using Leaf Rolling (옥수수 유묘기 잎말림에 따른 한발 내성 평가)

  • Song, Kitae;Kim, Kyung-Hee;Kim, Hyo Chul;Moon, Jun-Cheol;Kim, Jae Yoon;Baek, Seong-Bum;Kwon, Young-Up;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.8-16
    • /
    • 2015
  • The objective of this study was to evaluate the drought tolerance in maize seedling using leaf rolling. Nineteen maize resources, seven Nested Association Mapping parents lines, six Korean commercial cultivars, and six Southeast Asia commercial cultivars, were used to examine drought tolerance. The leaf rolling scores were measured on each leaf in three stress conditions with moderate drought (10%), severe drought (7%), and extreme drought (5%). Generally leaf rolling score of seedlings increased at the lower soil water potentials (5~7%). As a result, drought-tolerant cultivars showed lower leaf rolling score (below 2.5) than the drought sensitive cultivars (above 3.5). Nine varieties, NK4043, CML322, DK9955, NK4300, Ki11, DK8868, CML228, LVN99, and LVN10, have been selected for tolerance to drought stress. These results suggest that the leaf rolling score in maize seedling has been made available to indirect index for drought tolerance.

Effect of Rolling Factor on the Growth and Thatch Accumulation in Tall fescue. (Tall fescue의 생육과 thatch 축적에 미치는 압력요인의 영향)

  • 이주삼;윤용범;이강욱;윤익석
    • Asian Journal of Turfgrass Science
    • /
    • v.1 no.1
    • /
    • pp.37-41
    • /
    • 1987
  • Effect of Rolling factor on the growth and thatch accumulation in tall fescue was studied from the viewpoint of estimate the rolling factor to obtain the highest values of growth characters and analysis of thatch accumulation. Rolling factors were 1.82, 3.33, 4.29 and 4.85, respectively. The results are may he summarized as follows ; 1. Rolling factor was affected to obstructive on the growth of tall fescue. Thus, the rolling factor ( RF) had significant negative correlated with the dry weight of plant ( DW ), leaf weight (LW), stem weight (SW), dry weight of thatch (Th), number of tillers (NT) and C / F ratio. 2. Rolling factor of 1.82 was an adequate rolling factor for the growth. 3. The dry weight of thatch(Th) had significant positive correlated with DW, LW, and NT, but negative correlated with the dry weight of thatch per a tiller ( th / NT). 4. Thatch accumulation system can be shown in following diagram. yield compnents - DW ~ Th - Rf (LW, SW, NT, C/F) th/NT 5. The dry weight of thatch per a tiller(th / NT) was a concerning factor for the losses of thatch.

  • PDF

Comparative Drought Resistances among Eleven Warm-Season Turfgrasses and Associated Plant Parameters

  • Kim, Ki Sun;Beard, James B.
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.239-245
    • /
    • 2018
  • Comparative drought resistances of 11 perennial warm-season turfgrasses were evaluated in the field after withholding irrigation for 48 days in summer I and 57 days in summer II. There were significant variations among the grasses in their drought resistances. From two years study of field shoot recovery from drought stress, the relative rankings among the 11 warm-season turfgrasses was as follows. 'Arizona Common' and 'Texturf 10' bermudagrasses [Cynodon dactylon (L.) Pers.], 'Tifgreen' hybrid bermudagrass [C. dactylon (L.) Pers. ${\times}$ C. transvaalensis Davy], and 'Georgia Common' centipedegrass [Eremochloa ophiuroides (Munro.) Mack.] possessed good drought resistances, whereas 'Texas Common' St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] and 'Tifway' hybrid bermudagrass [Cyndon dactylon (L.) Pers ${\times}$ C. transvaalensis Davy] possessed poor drought resistances. 'Texas Common' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], 'Pensacola' bahiagrass (Paspalum notatum Flugge.), and 'Adalayd' seashore paspalum (Paspalum vaginatum Swartz), 'Meyer' zoysiagrass (Zoysia japonica Steud.), 'Emerald' zoysiagrass (Z. japonica Steud. ${\times}$ Z. tenuifolia Willd. ex Trin.) were found to rank intermediate. Visual leaf firing showed the highest correlation (r=-0.84) to shoot recovery from drought stress. Visual leaf rolling (r=-0.59) and canopy-air temperature differential (r=-0.64) also showed very significant correlations, whereas leaf water potential (r=0.54) showed relatively lower correlation.

Characteristics and Genetic Segregation of a Rolled Leaf Mutant in Rice

  • Lee, Songyee;Choi, Minseon;Lee, Joohyun;Koh, Hee-Jong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.260-264
    • /
    • 2011
  • Leaf structure is one of the important agronomic traits. A rolled leaf mutant was induced from an ethyl methane sulfonate (EMS)-treated japonica rice, 'Koshihikari'. The rolled leaf mutant showed phenotypes of reduced leaf width and leaf rolling. In addition, several abnormal morphological characteristics were observed, including dwarfism, defected panicle, delayed germination, and lower seed-setting. Microscopic analysis revealed that the number of small veins was decreased and the sizes of adaxial bulliform cells were reduced in the mutant leaves. The genetic study with two $F_2$ populations from the crosses of the rolled leaf mutant with 'Koshihikari' and Milyang23 suggested that the mutant phenotype might be controlled by a single dominant gene.

Physiological Responses of Warm-Season Turfgrasses under Deficit Irrigation (소량관수로 인한 난지형 잔디의 생리적 반응)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.9-22
    • /
    • 2009
  • Due to increasing concerns over issues with both water quantity and quality for turfgrass use, research was conducted to determine the response of five warm-season turfgrasses to deficit irrigation and to gain a better understanding of relative drought tolerance. St. Augustinegrass(Stenotaphrum secundatum [Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore Paspalum(Paspalum vaginatumSwartz.), 'Empire' zoysiagrass(Zoysia japonica Steud.), and 'Pensacola' bahiagrass(Paspalum notatum Flugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at100%, 80%, 60%, or 40% of evapotranspiration(ET). Evaluations included: a) shoot quality, leaf rolling, leaf firing; b) leaf relative water content(RWC), soil moisture content, chlorophyll content index(CCI), canopy photosynthesis(PS); c) multispectral reflectance(MSR); d) root distribution; and e) water use efficiency. Grasses irrigated at 100% and 80% of ET had no differences in visual quality, leaf rolling, leaf firing, RWC, CCI, and PS. Grasses irrigated at 60% of ET had higher values in physiological aspects than grasses irrigated at 40% of ET. 'Sealsle 1' and 'Palmetto' had a deeper root system than 'Empire' and 'Pensacola', while 'Floratam' had the least amount of root mass. Photosynthesis was positively correlated with visual assessments such as turf quality, leaf rolling, leaf firing, and sensor-based measurements such as CCI, soil moisture, and MSR. Reducing the amount of applied water by 20% did not reduce turfgrass quality and maintained acceptable physiological functioning.

A Rapid and Efficient Method for Construction of an Infectious Clone of Tomato yellow leaf curl virus

  • Bang, Bongjun;Lee, Jongyun;Kim, Sunyoung;Park, Jungwook;Nguyen, Thao Thi;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.310-315
    • /
    • 2014
  • Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is responsible for one of the most devastating viral diseases in tomato-growing countries and is becoming a serious problem in many subtropical and tropical countries. The climate in Korea is getting warmer and developing subtropical features in response to global warming. These changes are being accompanied by TYLCV, which is now becoming a large problem in the Korean tomato industry. The most effective way to reduce damage caused by TYLCV is to breed resistant varieties of tomatoes. To accomplish this, it is necessary to establish a simple inoculation technique for the efficient evaluation of resistance to TYLCV. Here, we present the rolling circle amplification (RCA) method, which employs a bacteriophage using phi-29 DNA polymerase for construction of infectious TYLCV clones. The RCA method is simple, does not require sequence information for cloning, and is less expensive and time consuming than conventional PCR based-methods. Furthermore, RCA-based construction of an infectious clone can be very useful to other emerging and unknown geminiviruses in Korea.

Morphological and Progeny Variations in Somaclonal Mutants of 'Ilpum' (Oryza sativa L.) ('일품'벼 체세포변이체의 표현형과 후대변이)

  • Park, Young-Hie;Kim, Tae-Heun;Lee, Hyun-Suk;Kim, Kyung-Min;Sohn, Jae-Keun
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.413-418
    • /
    • 2010
  • A total of 424 plants was regenerated from the seed-culture of a rice cultivar, 'Ilpum'. The regenerated plants were grown in a greenhouse. The 297 plants with high fertility were selected among 424 plants. The harvested seeds from each plant were planted to each line at experiment field in 2008 and 2009. The each line was evaluated for the agronomic and morphological traits, also. The 64 lines (21.5%) showed significant differences in agronomic and morphological traits from donor cultivar 'Ilpum' among 297 lines. The heading date different from donor cultivar 'Ilpum' showed highest frequency in 297 lines, and accounts for 9.1% (29 lines). The phenotype of opaque endosperm and rolling leaf account for 1.7% and 1.3% in 297 lines, respectively. The genetic segregation was observed in dwarf/semi-dwarf, rolling leaf and opaque endosperm at $S_1$ generation, but not in $S_2$ generation. These results suggest that the mutant derived from a tissue-culture will be one of the promising genetic resources, due to its wide variation and high frequency of mutation, comparatively.

The Characteristics of Friction and Wear for Automotive Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • 오세두;안종찬;박순철;정원욱;배동호;이영제
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.321-328
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9 (leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X­ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035 m/s (50 rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.