• Title/Summary/Keyword: leaf hydraulic conductance

Search Result 5, Processing Time 0.02 seconds

Elucidation of the physiological basis related to high photosynthetic capacity of soybean local variety, 'Peking'.

  • Sakoda, Kazuma;Suzuki, Seita;Tanaka, Yu;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.239-239
    • /
    • 2017
  • The enhancement of leaf photosynthetic capacity can have the potential to improve the seed yield of soybean. Key targets for the increase of leaf photosynthetic capacity remains unclear in soybean. Peking, Chinese local variety, has been the useful material for soybean breeding since it shows various resistances against biotic and abiotic stress. Sakoda et al., 2017 reported that Peking had the higher capacity of leaf photosynthesis than Enrei, Japanese elite cultivar. They identified the genetic factors related to high photosynthetic capacity of Peking. The objective of this study is to elucidate the physiological basis underlying high photosynthetic capacity of Peking. Peking and Enrei were cultivated at the experimental field of the Graduate School of Agriculture, Kyoto University, Kyoto, Japan. The sowing date was July 4, 2016. Gas exchange parameters were evaluated at the uppermost fully expanded leaves on 43, 49, and 59 days after planting (DAP) with a portable gas exchange system, LI-6400. The leaf hydraulic conductance, $K_{leaf}$, was determined based on the water potential and transpiration rate of the uppermost fully expanded leaves on 60 DAP. The morphological traits related to leaf photosynthesis were analyzed at the same leaves with the gas exchange measurements. The light-saturated $CO_2$ assimilation rate ($A_{sat}$) of Peking was significantly higher than that of Enrei at 43 and 59 DAP while the stomatal conductance ($g_s$) of Peking was significantly higher at all the measurements (p < 0.05). It suggested that high $A_{sat}$ was mainly attributed to high $g_s$ in Peking. $g_s$ is reported to be affected by the morphological traits and water status inside the leaf, represented by $K_{leaf}$, in crop plants. The tendency of the variation of the stomatal density between two cultivars was not consistent throughout the measurements. On the other hand, $K_{leaf}$ of Peking was 59.0% higher than that of Enrei on 60 DAP. These results imply that high $g_s$ might be attributed to high $K_{leaf}$ in Peking. Further research is needed to reveal the mechanism to archive high $g_s$ on the basis of water physiology in Peking. The knowledge combining the genetic and physiological basis underlying high photosynthetic capacity of Peking can be useful to improve the biomass productivity of soybean.

  • PDF

Analysis of Water Relations of Economic Oak Species by Hydraulic Architecture Method (Hydraulic architecture를 이용한 참나무속 주요 수종의 수분 특성 분석)

  • Kwon, Ki Won;Choi, Jeong Ho;Kim, Sun Ah
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.108-119
    • /
    • 1996
  • Several parameters of hydraulic architecture relating to hydraulic conductance in xylem vessels were investigated in the current-year shoots of six species of deciduous oak trees. The above parameters were also investigated in the sprouts of Quercus mongolica and Q. variabilis, as well as in the seedlings of Q. mongolica and Q. acutissima. The values of specific conductivity, leaf specific conductivity and Hagen-Poiseuille's relative hydraulic conductivity relating to vessel diameter of Q. dentata were the highest in all of the species studied. The above values of most of the species studied were higher in May-June than in September-October because of increasing the vessel embolism by cavitation and so on through the growing season. The estimated values of relative hydraulic conductivity of vessel by Hagen-Poiseuille's empirical equation and the real values of hydraulic conductivity presented positive relationships in most of the species studied. Huber value and leaf specific conductity using leaf area or leaf weight generally exhibited similar patterns each other even if having some exceptions. The hydraulic conductances of sprouting shoots were much better than those of normal growing shoots in Q. rnongolica and Q. variabilis. The specific conductivity and leaf specific conductivity were rapidly decreased by the vessel embolism through cavitating just after cutting the shoots in Q. mongolica and Q. acutissima seedlings. Diurnal changes of the conductivities in the seedlings of Q. mongolica and Q. acutissima presented the possibility of their self-controlling of conductance by active moisture absorption under mild water stress. Specific conductivity and leaf specific conductivity, and so on of Q. acutissima seedlings subjected to periodical moisture stress or not have decreased through the growing season, but the influences of moisture stress to the conductance were not proved definitely because of influencing similarly and simultaneously to the development of xylem and leaf having inverse relation in the influences. The values of conductivities were higher generally in middle or upper parts of stems than root collar in the seedlings.

  • PDF

Influence of Atmospheric Vapor Pressure Deficit on Fruit Fermentation of Oriental Melon(Cucumis melo L. var makuwa Makino) (대기 증기압차가 참외 발효과 발생에 미치는 영향)

  • Shin, Yong-Seub;Seo, Young-Jin;Choi, Chung-Don;Park, So-Deuk;Choi, Kyung-Bae;Yoon, Jae-Tak;Kim, Byung-Soo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.174-179
    • /
    • 2007
  • Although the relationship between fermentation and factors such as soil water, redox potential, rootstocks and climatic conditions has been reported, its mechanism of fermentation is still not clear. Transpirations of leaf and fruit at different climatic conditions, influence of soil water potential and atmospheric vapor pressure deficit (VPD) on fermentation were evaluated. Transpiration rate decreased with decreasing soil temperature and soil water potential. Low VPD conditions which occurred during low air temperature and high humidity also decreased transipration rate. These data exhibit that fruit water balance affected by various factors relate to transpiration. Our results also indicate that high hydraulic conductance of root, high soil water potential and low VPD condition exert a significant effect on fermention of oriental melon and so called "water filled fruit".

Studies on the Shade Tolerance, Light Requirement, and Water Relations of Economic Tree Species(I) - Changes of Hydraulic Conductance of Six Deciduous Hardwood Species Subjected to Artificial Shade Treatments - (주요경제수종(主要經濟樹種)의 내음성(耐陰性) 및 광선요구도(光線要求度)와 수분특성(水分特性)에 관한 연구(硏究)(I) - 인공피음처리(人工被陰處理)를 실시(實施)한 낙엽활엽수(落葉闊葉樹) 6종(種)의 수분통도성(水分通道性) 변화(變化) -)

  • Kwon, Ki Won;Choi, Jeong Ho;Chung, Jin Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.292-298
    • /
    • 1999
  • Huber value and leaf specific conductivity were investigated for determining the hydraulic conductance of six deciduous hardwood species subjected to five levels of artificial shade treatments. Huber values measured in full sun were in the ranges of $1.5{\sim}9.1mm^2/dm^2$, $1.3{\sim}2.6mm^2/dm^2$, $1.5{\sim}5.3mm^2/dm^2$ in June, July, and September, respectively in the first year. The values generally decreased with increasing the shading in most of the species studied. Because of early defoliation in September, most of the values measured were also higher in September than in July. Huber values were quite different between those of the first year and those of the second year in most of the species studied, but the seasonal variation of Huber values and shading effects to the values seemed to be similar between the first and the second years. The values of leaf specific conductivity(LSC) measured in Betula platyphylla var. japonica. B. schmidtii, Zelkova serrata, Acer mono for 2 years were in the range of $4.0{\sim}80.0{\mu}{\ell}/dm^2$ by season and by shading treatment. But in Ligustrum obtusifolium and Prunus sargentii, the values were in the ranges of $4.0{\sim}280.0{\mu}{\ell}/dm^2$ and $8.0{\sim}120{\mu}{\ell}/dm^2$, respectively with having quite different values compared with those of the above species. Seasonal variation of LSC values was more or less irregular by species and by treatment year, but the LSC values of B. platyphylla vac. japonica, B. schmidtii, and P. sargentii in the first year and also those of Z. serrata and P. sargentii in the second year were mostly higher in September than in July. The LSC values seemed to be generally decreased with increasing the artificial shading in all of the species studied.

  • PDF

Effect of Vase Water Temperature and Leaf Number on Water Relations and Senescence of Cut Roses (절화장미의 수분관계와 노화에 대한 용기내 수온과 엽수의 효과)

  • In, Byung-Chun;Chang, Myoung-Kap;Byoun, Hye-Jin;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.609-617
    • /
    • 2010
  • The effect of vase water temperature and leaf number on water relations and senescence responses was determined in cut roses. Freshly harvested 'Red Sandra' roses were re-trimmed to 50 cm leaving two or four upper leaves and held in one of three solutions: ambient temperature distilled water ($23^{\circ}C$; AT-DW), low temperature distilled water ($7^{\circ}C$; LT-DW) and low temperature preservative solution (LT-PW). Flowers were kept in an environmental controlled room. Treatment effects evaluated were vase life, flower diameter, and changes in fresh weight and water uptake. Differences in water relations were determined by measuring $CO_2$ assimilation, stomatal conductance, and stem water flux rate (SFR). The water uptake rate was significantly increased in roses in LT-DW and decreased in those in LT-PW. While showing lower solution uptake rate during vase period, roses in LT-PW exhibited greatest fresh weight, longest positive water balance duration and largest flower diameter. Flowers with two leaves attached exhibited a higher fresh weight and improved water balance, thereby extending vase life. $CO_2$ assimilation rate and stomatal conductance were significantly decreased by placing flowers in LT-PW, yet increased by reducing leaf number to two leaves on the flower stems. Compared to the upper stem, the SFR of the basal stem of roses in AT-DW was lower, whereas SFR in basal stems of roses in LT-DW was much higher, suggesting that low-temperature water improved the hydraulic conductance in the stems. In contrast, roses in LT-PW had a stable SFR during the experimental period and displayed a similar pattern in SFR between upper and basal portions of the stems. Consequently, the vase life of cut roses in LT-PW and LT-DW was extended by more than eight and four days, respectively, compared to those in AT-DW.