Effect of Vase Water Temperature and Leaf Number on Water Relations and Senescence of Cut Roses

절화장미의 수분관계와 노화에 대한 용기내 수온과 엽수의 효과

  • In, Byung-Chun (Department of Environmental Science, Konkuk University) ;
  • Chang, Myoung-Kap (Department of Environmental Science, Konkuk University) ;
  • Byoun, Hye-Jin (Department of Environmental Science, Konkuk University) ;
  • Son, Ki-Cheol (Department of Environmental Science, Konkuk University)
  • 인병천 (건국대학교 생명환경과학대학 환경과학전공) ;
  • 장명갑 (건국대학교 생명환경과학대학 환경과학전공) ;
  • 변혜진 (건국대학교 생명환경과학대학 환경과학전공) ;
  • 손기철 (건국대학교 생명환경과학대학 환경과학전공)
  • Received : 2009.09.15
  • Accepted : 2010.05.20
  • Published : 2010.08.31

Abstract

The effect of vase water temperature and leaf number on water relations and senescence responses was determined in cut roses. Freshly harvested 'Red Sandra' roses were re-trimmed to 50 cm leaving two or four upper leaves and held in one of three solutions: ambient temperature distilled water ($23^{\circ}C$; AT-DW), low temperature distilled water ($7^{\circ}C$; LT-DW) and low temperature preservative solution (LT-PW). Flowers were kept in an environmental controlled room. Treatment effects evaluated were vase life, flower diameter, and changes in fresh weight and water uptake. Differences in water relations were determined by measuring $CO_2$ assimilation, stomatal conductance, and stem water flux rate (SFR). The water uptake rate was significantly increased in roses in LT-DW and decreased in those in LT-PW. While showing lower solution uptake rate during vase period, roses in LT-PW exhibited greatest fresh weight, longest positive water balance duration and largest flower diameter. Flowers with two leaves attached exhibited a higher fresh weight and improved water balance, thereby extending vase life. $CO_2$ assimilation rate and stomatal conductance were significantly decreased by placing flowers in LT-PW, yet increased by reducing leaf number to two leaves on the flower stems. Compared to the upper stem, the SFR of the basal stem of roses in AT-DW was lower, whereas SFR in basal stems of roses in LT-DW was much higher, suggesting that low-temperature water improved the hydraulic conductance in the stems. In contrast, roses in LT-PW had a stable SFR during the experimental period and displayed a similar pattern in SFR between upper and basal portions of the stems. Consequently, the vase life of cut roses in LT-PW and LT-DW was extended by more than eight and four days, respectively, compared to those in AT-DW.

절화 장미의 수분관계와 노화반응에 대한 용기내 수온과 엽수의 효과를 조사하였다. 신선한 상태로 수확된 'Red Sandra' 장미의 줄기는 상위엽 2매 또는 4매와 함께 길이 50cm로 정리되었다. 절화는 상온증류수($23^{\circ}C$; AT-DW), 저온증류수 ($7^{\circ}C$; LT-DW), 또는 저온보존용액(LT-PW)이 포함된 용기에 침지된 상태로 환경제어실에서 유지되었다. 처리간의 효과는 절화수명, 화경, 생체중 및 수분흡수량의 변화에 의하여 평가되었다. 수분관계에 있어서 차이는 $CO_2$동화율, 기공전도, 그리고 줄기수분유속(SFR)을 측정함으로써 판단되었다. 수분흡수율은 LT-DW 장미에서 현저하게 증가되었고, LT-PW 장미에서 감소되었다. LT-PW 장미는 실험기간 동안 낮은 용액흡수량을 보였음에도 불구하고, 높은 생체중, 가장 긴 정의 수분균형기간, 그리고 가장 큰 화경을 나타냈다. 2매엽의 장미는 높은 생체중과 향상된 수분 균형을 유지한 결과로 절화수명이 연장되었다. $CO_2$동화율과 기공전도도는 LT-PW에 유지함으로써 현저하게 감소되었고, 엽수의 감소에 의하여 증가되었다. AT-DW장미의 경우, 줄기상부에 비하여 줄기하부의 SFR이 낮았으나, LT-DW 장미는 줄기하부의 SFR이 훨씬 컸다. 이것은 저온수가 줄기내의 수분전도율을 향상시킨다는 것을 나타낸다. 반면, LT-PW 장미는 실험기간 동안 안정된 SFR을 유지하였고, 줄기상부와 줄기하부에서 유사한 SFR 패턴을 나타냈다. 결과적으로 LT-PW와 LT-DW장미는 AT-DW 장미에 비하여 절화수명이 각각 8일과 4일 이상 연장되었다.

Keywords

References

  1. Burdett, A.N. 1970. The cause of bent-neck in cut roses. J. Amer. Soc. Hort. Sci. 95:427-431.
  2. Carpenter, W.J. and H.P. Rasmussen. 1973. Water uptake rates by cut roses. J. Amer. Soc. Hort. Sci. 98:309-313.
  3. Carpenter, W.J. and H.P. Rasmussen. 1974. The role of flower and leaves in cut flower water uptake. Sci. Hort. 2:293-298. https://doi.org/10.1016/0304-4238(74)90038-7
  4. De Stigter, H.C.M. 1980. Water balance of cut and intact 'Sonia' rose plants. Z. Pflanzenphysiol. 99:131-140.
  5. De Stigter, H.C.M. 1981. A method for cutting plant stems without causing air to enter the vascular system. Acta Hort. 113:169-170.
  6. Doi, M., Y. Hu, and H. Imanishi. 2000. Water relations of cut roses as influenced by vapor pressure deficits and temperatures. J. Jpn. Soc. Hort. Sci. 69:584-589. https://doi.org/10.2503/jjshs.69.584
  7. Doi, M., M. Miyagawa-Namao, K. Inamoto, and H. Imanishi. 1999. Rhythmic changes in water uptake, transpiration and water potential of cut roses as affected by photoperiods. J. Jpn. Soc. Hort. Sci. 68:861-867. https://doi.org/10.2503/jjshs.68.861
  8. Evans, R.Y. and M.S. Reid. 1988. Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. J. Amer. Soc. Hort. Sci. 113:884-888.
  9. Ferreira, D.J. and G.H. De Swardt. 1981. The influence of the number of foliage leaves on the vase life of cut rose flowers in the media. Agroplantae. 13:73-76.
  10. Grace, J. 1988. Plant response to wind. Agri. Ecosyst. Environ. 22-23:71-88. https://doi.org/10.1016/0167-8809(88)90008-4
  11. He, S., D.C. Joyce, and D.E. Irving. 2006. Competition for water between inflorescences and leaves in cut flowering stems of Grevillea 'Crimson Yul-lo'. J. Hort. Sci. Biotech. 81:891-897.
  12. Hu, Y., M. Doi, and H. Imanishi. 1998. Competitive water relations between leaves and flower bud during transport of cut roses. J. Jpn. Soc. Hort. Sci. 67:532-536. https://doi.org/10.2503/jjshs.67.532
  13. Ichimura, K., Y. Kawabata, M. Kishimoto, R. Goto, and K. Yamada. 2003. Shortage of soluble carbohydrates is largely responsible for short vase life of cut 'Sonia' rose flowers. J. Jpn. Soc. Hort. Sci. 72:292-298. https://doi.org/10.2503/jjshs.72.292
  14. Ichimura, K., K. Kojima, and R. Goto. 1999. Effects of temperature, 8-hydroxyquinoline sulphate and sucrose on the vase life of cut rose flowers. Postharvest Biol. Tec. 15:33-40. https://doi.org/10.1016/S0925-5214(98)00063-5
  15. In, B.C., M.K. Chang, and K.C. Son. 2007a. Effects of lowtemperature water in vase on the hydraulic physiological characteristics and senescence of cut roses (Rosa spp. 'Red Sandra'). Kor. J. Hort. Sci. Technol. 21:451-457.
  16. In, B.C., M.K. Chang, and K.C. Son. 2009a. Effect of vase water temperature and preservative on water relations and flower opening characteristics in cut roses. Kor. J. Hort. Sci. Technol. 27:116-122.
  17. In, B.C., K. Inamoto, and M. Doi. 2009b. A neural network technique to develop a vase life prediction model of cut roses. Postharvest Biol. Tec. 52:273-278. https://doi.org/10.1016/j.postharvbio.2009.01.001
  18. In, B.C., S. Motomura, K. Inamoto, M. Doi, and G. Mori. 2007b. Multivariate analysis of relations between preharvest environmental factors, postharvest morphological and physiological factors, and vase life of cut 'Asami Red' roses. J. Jpn. Soc. Hort. Sci. 76:66-72. https://doi.org/10.2503/jjshs.76.66
  19. Kuiper, D., S. Ribot, H.S. Vanreenen, and N. Marissen. 1995. The effect of sucrose on the flower bud opening of 'Madelon' cut roses. Sci. Hort. 60:325-336. https://doi.org/10.1016/0304-4238(94)00706-L
  20. Marousky, F.J. 1969. Vascular blockage, water absorption, stomatal opening, and respiration of cut 'Better times' roses treated with 8-hydroxyquinoline citrate and sucrose. J. Amer. Soc. Hort. Sci. 94:223-226.
  21. Mayak, S. and A.H. Halevy. 1980. Flower senescence, p. 131-156. In: K.V. Thimann (ed.). Senescence in Plants. CRC Press, Boca Raton.
  22. Mayak, S., A.H. Halevy, S. Sagie, A. Bar-Yoseph, and B. Bravdo. 1974. The water balance of cut rose flowers. Physiol. Plant. 31:15-22. https://doi.org/10.1111/j.1399-3054.1974.tb03671.x
  23. Mortensen, L.M. and H.R. Gislerod. 2000. Effect of air humidity on growth, keeping quality, water relations, and nutrient content of cut roses. Gartenbauwissenschaft. 65:40-44.
  24. Norikoshi, R., K. Ichimura, and H. Imanish. 2006. Effects of the temperature of vase water in the vase life of cut rose flowers. Environ. Control Biol. 44:85-91. https://doi.org/10.2525/ecb.44.85
  25. Reid, M.S., M. Mokhtari, J.H. Lieth, W.G. Van Doorn, and R.Y. Evans. 1996. Modelling the postharvest life of cut roses. Acta Hort. 424:137-144.
  26. Slootweg, G. 1995. Effect of water temperature on water uptake and vase life of different cut flowers. Acta Hort. 405:67-74.
  27. Son, K.C., H.J. Byoun, and M.K. Kim. 1997. Effect of ethionine on the photosynthesis, respiration, and transpiration of leaf of cut rose (cv. Red Sandra) during vaselife. Hort. Environ. Biotechnol. 38:297-302.
  28. Song, J.S., W.G. Van Doorn, and H. Harkema. 1992. Water relations of cut rose flowers cv. Sonia after dry storage. Hort. Environ. Biotechnol. 33:337-342.
  29. Taize, L. and E. Zeiger. 1998. Plant Physiology. Sinauer Associates, Inc., Sunderland, MA.
  30. Torre, S., T. Fjeld, H.R. Gislerod, and R. Moe. 2003. Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. J. Amer. Soc. Hort. Sci. 128: 598-602.
  31. Van Doorn, W.G. 1989. Role of physiological processes, microorganisms, and air embolism in vascular blockage of cut rose flowers. Acta Hort. 261:27-34.
  32. Van Doorn, W.G. 1997. Water relations of cut flowers. Hort. Rev. 18:1-85.
  33. Van Doorn, W.G. and R.R.J. Perik. 1990. Hydroxyquinoline citrate and low pH prevent vascular blockage in stems of cut rose flowers by reducing the number of bacteria. J. Amer. Soc. Hort. Sci. 115:979-981.
  34. Van Doorn, W.G. and M.S. Reid. 1995. Vascular occlusion in stems of cut rose flowers exposed to air: role of xylem anatomy and rates of transpiration. Physiol. Plant. 93:624-629. https://doi.org/10.1111/j.1399-3054.1995.tb05109.x
  35. Van Meeteren, U. 1992. Role of air embolism and low water temperature in water balance of cut chrysanthemum flowers. Sci. Hort. 51:275-284. https://doi.org/10.1016/0304-4238(92)90125-V
  36. Van Meeteren, U., L. Arevalo-Galarza and W.G. Van Doorn. 2006. Inhibition of water uptake after dry storage of cut flowers: Role of aspired air and wound-induced processes in Chrysanthemum. Postharvest Biol. Technol. 41:70-77. https://doi.org/10.1016/j.postharvbio.2006.03.005
  37. Zagory, D. and M. S. Reid. 1986. Role of vase solution microorganisms in the life of cut flowers. J. Amer. Soc. Hort. Sci. 111:154-158.
  38. Zieslin, N. 1989. Postharvest control of vaselife and senescence of rose flowers. Acta Hort. 261:257-264.