• Title/Summary/Keyword: leaf expansion

Search Result 85, Processing Time 0.029 seconds

Inhibitory effect of ethanolic extract of Abeliophyllum distichum leaf on 3T3-L1 adipocyte differentiation

  • Thomas, Shalom Sara;Eom, Ji;Sung, Nak-Yun;Kim, Dong-Sub;Cha, Youn-Soo;Kim, Kyung-Ah
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.555-567
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Abeliophyllum distichum is a plant endemic to Korea, containing several beneficial natural compounds. This study investigated the effect of A. distichum leaf extract (ALE) on adipocyte differentiation. MATERIALS/METHODS: The cytotoxic effect of ALE was analyzed using cell viability assay. 3T3-L1 preadipocytes were differentiated using induction media in the presence or absence of ALE. Lipid accumulation was confirmed using Oil Red O staining. The mRNA expression of adipogenic markers was measured using RT-PCR, and the protein expressions of mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor gamma (PPAR𝛾) were measured using western blot. Cell proliferation was measured by calculating the incorporation of Bromodeoxyuridine (BrdU) into DNA. RESULTS: ALE reduced lipid accumulation in differentiated adipocytes, as indicated by Oil Red O staining and triglyceride assays. Treatment with ALE decreased the gene expression of adipogenic markers such as Ppar𝛾, CCAAT/enhancer binding protein alpha (C/ebp𝛼), lipoprotein lipase, adipocyte protein-2, acetyl-CoA carboxylase, and fatty acid synthase. Also, the protein expression of PPAR𝛄 was reduced by ALE. Treating the cells with ALE at different time points revealed that the inhibitory effect of ALE on adipogenesis is higher in the early period treatment than in the terminal period. Furthermore, ALE inhibited adipocyte differentiation by reducing the early phase of adipogenesis and mitotic clonal expansion. This was indicated by the lower number of cells in the Synthesis phase of the cell cycle (labeled using BrdU assay) and a decrease in the expression of early adipogenic transcription factors such as C/ebp𝛽 and C/ebp𝛿. ALE suppressed the phosphorylation of MAPK, confirming that the effect of ALE was through the suppression of early phase of adipogenesis. CONCLUSIONS: Altogether, the results of the present study revealed that ALE inhibits lipid accumulation and may be a potential agent for managing obesity.

Growth and Physiological Adaptations of Tomato Plants (Lycopersicon esculentum Mill) in Response to Water Scarcity in Soil (토양 수분 결핍에 따른 토마토의 생육과 생리적응)

  • Hwang, Seung-Mi;Kwon, Taek-Ryun;Doh, Eun-Soo;Park, Me-Hea
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.266-274
    • /
    • 2010
  • This study aim to investigate fundamentally the growth and physiological responses of tomato plants in responses to two different levels of water deficit, a weak drought stress (-25 kPa) and a severe drought stress (-100 kPa) in soil. The two levels of water deficit were maintained using a micro-irrigation system consisted of soil sensors for the real-time monitoring of soil water content and irrigation modules in a greenhouse experiment. Soil water contents were fluctuated throughout the 30 days treatment period but differed between the two treatments with the average -47 kPa in -25 kPa set treatment and the -119 kPa in -100 kPa set treatment. There were significant differences in plant height between the two different soil water statuses in plant height without differences of the number of nodes. The plants grown in the severe water-deficit treatment had greater accumulation of biomass than the plants in the weak water-deficit treatment. The severe water-deficit treatment (-119 kPa) also induced greater leaf area and leaf dry weight of the plants than the weak water-deficit treatment did, even though there was no difference in leaf area per unit dry weight. These results of growth parameters tested in this study indicate that the severe drought could cause an adaptation of tomato plants to the drought stress with the enhancement of biomass and leaf expansion without changes of leaf thickness. Greater relative water content of leaves and lower osmotic potential of sap expressed from turgid leaves were recorded in the severe water deficit treatment than in the weak water deficit treatment. This finding also postulated physiological adaptation to be better water status under drought stress. The drought imposition affected significantly on photosynthesis, water use efficiency and stomatal conductance of tomato plants. The severe water-deficit treatment increased PSII activities and water use efficiency, but decreased stomatal conductance than the weak water-deficit treatment. However, there were no differences between the two treatments in total photosynthetic capacity. Finally, there were no differences in the number and biomass of fruits. These results suggested that tomato plants have an ability to make adaptation to water deficit conditions through changes in leaf morphology, osmotic potentials, and water use efficiency as well as PSII activity. These adaptation responses should be considered in the screening of drought tolerance of tomato plants.

Biomass and Net Primary Production of Pinus densiflora Stands in Gochang regions (고창지역 소나무림의 바이오매스 및 순생산량에 관한 연구)

  • Seo, Yeon-Ok;Lee, Young-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.45-53
    • /
    • 2010
  • This study was conducted to examine the biomass and net primary production, stem density and biomass expansion factors of Pinus densiflora in Gochang regions. The mean age of Pinus densiflora in both stands was 10 and 48 years. The dry weights (kg/tree) and aboveground biomass (Mg/ha) were 8.59 and 17.55 for 10 years young stand, 166.66 and 122.05 for 48 years old stand. The total biomass (Mg/ha) including the above and belowground were 21.48 and 154.16 in both age stands. The proportion of stem biomass, stem bark biomass and root biomass increased from the young stand to the old stand while on the leaf biomass and branch biomass, tend to decreased. The net primary production of aboveground biomass (Mg/ha) and belowground biomass were 6.30~6.95 for the young stand and 11.61~13.19 for old stand. The stem density ($g/cm^3$) was 0.338 for young stand while on the other hand, 0.448 for old stand was observed. The above and total biomass expansion factors were 2.304~2.508 and 1.318~1.644 in each age stands, respectively.

Development of Zygotic Embryos and Seedlings is Affected by Radiation Spectral Compositions from Light Emitting Diode (LED) System in Chestnut (Castanea crenata S. et Z.)

  • Park, So-Young;Kim, Man-Jo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.750-754
    • /
    • 2010
  • Among the environmental conditions employed in micropropagation, light quality plays an important role in growth, specially morphogenesis and photosynthesis. The effect of radiation quality (350-740 nm) on the development and growth of zygotic embryos and in vitro plantlets of open-pollinated chestnut (Castanea crenata S. et Z.) were studied. Two types of explants were exposed for 4 weeks to cool white (W, as control), monochromatic red (R, peak emission 650 nm), monochromatic blue (B, peak emission 440 nm), red+blue (R+B, 1:1), or red+far-red (R+Fr, 1:1, far-red peak emission 720 nm) radiation from a light-emitting-diode (LED) system. While the zygotic embryos showed positive photoblastic behavior, their germination was inhibited by blue radiation. Hypocotyl elongation and root development were promoted by red radiation. The emergence of primary leaf and its expansion were faster under blue than under red radiation. In the plantlets, red and red+far-red radiation significantly increased the formation and growth of the root, whereas blue light reduced rooting. Therefore, radiation quality appears to influence some steps in the development of zygotic embryos and plantlets in the chestnut.

Clonal Stratehy and Physiological Integration a Rhizomatous perennial Convallaria Keiskei I Ramet Growth and Clonal Structure (지하경생장식물인 은방울꽃의 영양생장전략과 생리적 통합 1. 라메트의 생장과 클론의 구조)

  • Choung, Yeon Sook
    • The Korean Journal of Ecology
    • /
    • v.19 no.6
    • /
    • pp.507-517
    • /
    • 1996
  • To explain the horizontal expansion of a rhizomatous perennial, Convallaria keiskei(lily-of-the-valley), in a study site of Chunchon, Kangwon Province, Korea, ramet growth and clonal structure were studied. Remarkable growth stategies were clarified. First, the timing for the successive phenological events such as sprouting. flowering and rhizome growth for lily-of-the-valley was fitted to exploit early spring when the canopy of overstory was opened. Second, these events were supported by effective matter allocation pattern: for example, two-year investment for new rhizomes enabled the first year ramets to mature in six weeks after sprouting and to grow up to 85% of the leaf area of perennial ramets. Finally, the ramet population was increased by local disturbances such as freezing, herbivory and collection by human. The rule that a clone was supposed to produce one new thizome per year was broken by occasional disturbances. Then, up to 5rhizomes from latent bur could be redeveloped. Based on clonal structure, 80% or total clones have from 1 to 4 ramets. this means there have occurred minor disturbances. Therefore, in conclusion, the successful flourishing of lily-of-the-valley came from its effective frowth strategy to take advantage of site disturbance.

  • PDF

Pan-Genome Analysis Reveals Origin Specific Genome Expansion in Enterococcus mundtii Strains

  • Neeti Pandey;Raman Rajagopal;Shubham Dhara
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.163-178
    • /
    • 2024
  • Pan-genome analysis is used to interpret genome heterogeneity and diversification of bacterial species. Here, we present pan-genome analysis of 22 strains of Enterococcus mundtii. The GenBank file of E. mundtii strains that have been isolated from different sources i.e., human fecal matter, soil, leaf, dairy products, and insects was downloaded from National Center for Biotechnology Information (NCBI) database and analyzed using BPGA-1.3.0 (Bacterial Pan Genome Analysis) pipeline. Out of a total, 4503 gene families, 1843 belongs to the core genes whereas 1,762 gene families represent the accessory genes and 898 gene families depict the unique genes among all the selected genomes. Majority of the core genes belongs to the categories of Metabolism (37.83%) and Information storage & processing (29.84%) whereas unique genes belongs to the category of Information storage & processing (48.08%). Further, accessory genes are almost equally present in both functional categories i.e. Information storage & processing and Metabolism (34.34% and 32.27% respectively). Further, subset analysis on the basis of the origin of isolates exhibits presence and absence of exclusive gene families. The observation suggests that even closely related strains of a species show extensive disparity in genome owing to their ability to adapt to a specific environment.

Genotypic Effect of Watermelon (Citrullus lanatus Thunb.) on Organogenesis from Shoot Tip Culture of Seedlings (수박의 유묘 정단 배양시 유전적 차이가 기관 형성에 미치는 영향)

  • 이현기;백기엽;서영기;리왕영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.4
    • /
    • pp.239-246
    • /
    • 1994
  • The genotypic (2n, 3n, 4n) response of watermelon in vitro shoot tip culture was evaluated. Different genotypes had similar response in terms of shoot formation and growth. Shoot formation was better at lower concentration of 0.3 mg/L BA and higher concentration of 5-10.0 mg/L 2iP and kinetin, but growth of newly formed shoot was inhibited. With further subculture, kinetin did not promote shoot formation Better shoot formation was observed at 0.3-0.5 mg/L BA. Combination of 0.3 mg/L BA and 0.3-0.5 mg/L BA was effective in shoot multiplication, growth and induction of more internodes. Varrying levels of light intensity and agar concentration did not affect the performance of tetraploid plants. Higher light intensity and agar concentrations decreased the number of shoot formed in triploid plane. Growth in both genotype, however was inhibited. Higher light intensity was found to promote leaf senescence in all genotypes. All growth inhibitors decreased the number of shoots formed and slowed plant growth there by prolonging duration of cultures. Growth inhibitors were to observed to decrease incidence of hyperhydricity in culture. No difference in shoot formation was observed in each of the concentrations used in Ancymidol, TIBA, CCC and PP333. Shoot formation and growth was more inhibited in ABA treatments. Leaf expansion and growth was poor in all treatments.

  • PDF

Estimation of the relationship between below-ground root and above-ground canopy development by measuring dynamic change of soil ammonium-N concentration in rice

  • Fushimi, Erina;Yoshida, Hiroe;Tokida, Takeshi;Nakagawa, Hiroshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.183-183
    • /
    • 2017
  • In the early part of rice growth, root volume primarily limits the amount of plant-accessible nitrogen (N). Therefore, knowledge of the root development is important for modeling N uptake of rice. The timing when the volume of rhizosphere cover the whole soil is also important to carry out timely top dressing. However, information about initial root expansion and associated N uptake is limited due to intrinsic technical difficulties in assessing below-ground processes. Some studies, however, showed a close relationship between below-ground root and above-ground leaf development, suggesting a possibility that above-ground attributes could serve as surrogates for the root processes. In this study, we investigated the relationship between below-ground and above-ground development of rice. Field experiments were conducted where we cultivated Koshihikari (a leading cultivar in Japan) for four different cropping schedules in 2012. In 2016, Gimbozu (HEG4) and three flowering time mutant lines of Gimbozu (X61 (se13), HS276 (ef7), DMG9 (se13, ef7)) were examined for a single season. Experiments were performed with three replications in a completely randomized design. We monitored ammonium-N concentration ([NH4+-N]) in soil solution by repeatedly taking samples from a porous tubing (10-cm long) vertically inserted at the most distant point from surrounding rice hills. Samples were taken in triplicate (= triplicate tubes) and every three days from transplanting in each experimental unit. For above-ground attributes, leaf area index (LAI) was measured in 2012, whereas soil coverage ratio was estimated by image processing in 2016. Results showed that [NH4+-N] increased gradually after transplanting and then rapidly decreased from a certain day. This distinct drop in [NH4+-N] informed us the timing at which the rice root system reached the point of porous tubing and thus essentially covered the whole soil volume. The LAI at the dropping point was about 0.43 regardless of the cropping schedules in 2012 experiment. In 2016, the coverage ratio at the N dropping point was within the range of 0.12 to 0.19 for four genotypes having different growth durations. In addition, the coverage ratios at seven weeks after the transplanting showed a good correspondence to LAI across the four genotypes. We therefore conclude that both LAI and coverage ratio may serve as robust indicators for root development and might be useful to estimate the timing when the root system fully cover the soil volume. Results obtained here will also contribute to develop models that can predict not only above-ground canopy development but also associated below-ground processes.

  • PDF

Numerical Simulation of Water Uptake of Soybean Field (대두포장(大豆圃場)에서 수분흡수(水分吸收)에 관(關)한 수치해석학적(數値解析學的) 모형(模型))

  • Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 1981
  • A mathematical model based on the water flow equation was developed with the Ohm's analogy and the partial differential equations. Simulation of water uptake was performed by numerically solving the equations with the aid of a differential equation solver, DGEAR in IMSL package, in FORTRAN version. The input data necessary were climatological parameters (temperature, solar radiation, humidity and wind speed). plant parametors (leaf water potential, leaf area, root conductivity and root length density) and soil parameters (hydraulic conductivity and The graphical comparison of the simulated and measured water contents as the functions of time showed good agreement, but there still was some disparity due to possible inacouracy of the field measured parameters. The simulated soil evaporation showed about 2 mm/day early in the growing period and dropped to about 0.4 mm/day as the full canopy developed and the soil water depleted. During the dry period, soil evaporation was as low as 0.1 mm/day. The transpiration was as high as 5mm/day. Deep percolation calculated from the flux between the 180-cm layer was about 0.2mm/day and became smaller with time. After the soil water of upper layers depleted, the flux reversed showing capillary rise. The rate of the capillary rise reached about 0.07mm/day, which was too low to satisfy water uptake of the root system. Therefore, to increase use of water in deep soil, expansion of the root system is necessary.

  • PDF

Development of Prediction Growth and Yield Models by Growing Degree Days in Hot Pepper (생육도일온도에 따른 고추의 생육 및 수량 예측 모델 개발)

  • Kim, Sung Kyeom;Lee, Jin Hyoung;Lee, Hee Ju;Lee, Sang Gyu;Mun, Boheum;An, Sewoong;Lee, Hee Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.424-430
    • /
    • 2018
  • This study was carried out to estimate growth characteristics of hot pepper and to develop predicted models for the production yield based on the growth parameters and climatic elements. Sigmoid regressions for the prediction of growth parameters in terms of fresh and dry weight, plant height, and leaf area were designed with growing degree days (GDD). The biomass and leaf expansion of hot pepper plants were rapidly increased when 1,000 and 941 GDD. The relative growth rate (RGR) of hot pepper based on dry weight was formulated by Gaussian's equation RGR $(dry\;weight)=0.0562+0.0004{\times}DAT-0.00000557{\times}DAT^2$ and the yields of fresh and dry hot pepper at the 112 days after transplanting were estimated 1,387 and 291 kg/10a, respectively. Results indicated that the growth and yield of hot pepper were predicted by potential growth model under plastic tunnel cultivation. Thus, those models need to calibration and validation to estimate the efficacy of prediction yield in hot pepper using supplement a predicting model, which was based on the parameters and climatic elements.