• Title/Summary/Keyword: leaf clipping

Search Result 22, Processing Time 0.027 seconds

Studies on the growth of Korea Lawn Grass (Zoysia japonica Steud.)in Reponse to Nitrogen Application, Clipping Treatment and Plant Density (질소시용, 예초 및 재식밀도가 한국잔디(Zoysia Japonica Steud)의 생육에 미치는 영향)

  • Sim, Jae-Seong
    • The Journal of Natural Sciences
    • /
    • v.1
    • /
    • pp.61-113
    • /
    • 1987
  • The increasing emphasis placed on the production of fine turf for lawns, golf courses, parks, and other recreational sites has led to many unsolved problems as to how such turf could be best established and mainteined. For this purpose, a series of experiments were conducted under con ditions of pot and field. The results obtained were as follows EXPERIMENT I. The effect of nitrogen fertilizer and clipping interval on Zoysia japonica. 1. Increasing the rate of nitrogen and frequent clipping increased tiller number of Zoysis japonica and the maximum number of tillers were obtained from 700 kg N application and freqnent clippings (10 days interval ) in October. Treatment of 350kg N with 10 days clipping interval increased tillers much more than those of 700 kgN with 20 and 30 days clipping intervals. 2. The average number of green leaves occurred during the growth period maximized by applying 700 kg N and clipping 10 days interval. 3. Increasing tiller numbers significantly decreased tops DM weight per tiller by clipping plants at interval of 10 and 20 days, irrespective of nitrogen applied, and with nil N, at the interval of 30 days. By applying 700 kg N, however, top DM weight per tiller increased as the number of tillers increased consistently. 4. The highest top DM weight was achieved from late August to early September by applying 350 and 700kgN. 5. During the growth period, differences in unders ( stolon + root ) DM weight occurred bynitrogen application were found between nil N and two applied nitrogen levels, whereas, at the same level of nitrogen applied, the increase in stolon DM weight enhanced by lengthening the clipping interval to 30 days. 6. Nitrogen efficiency to green leaves, stolon nodes and DM weight of root with high nitrogen was achieved as clipping interval was shortened. 7. By increasing fertilizer nitrogen rate applied, N content n the leaves and stems of Zoysiajaponica was increased. On the other hand, N content in root and stolon had little effect onfertilizer nitrogen, resulting in the lowest content among plant fractions. The largest content of N was recorded in leaves. Lengthening the clipping interval from 10 or 20 to 30 days tends to decrease the N content in the leaves and stems, whereas this trend did not appeared in stolon androot. 8. A positive correlations between N and K contents in tops and stolon were established andthus K content increased as N content in tops and stolon increased. Meanwhile, P content was not affected by N and clipping treatments. 9. Total soluble carbohydrate content in Zoysia japonica was largest in stolon and stem, and was reduced by increasing fertilizer nitrogen rate. Reduction in total soluble carbohydrate due to increased nitrogen rate was severer in the stolons and stems than in the leaves. 10. Increasing the rate of nitrogen applied increased the number of small and large vascular bundles in leaf blade, but shortened distance among the large vascular bundles. Shortening the clipping interval resulted in increase of the number of large vascular bundles but decrease ofdistance between large vascular bundles.EXPERIMENT II. Growth response of Zoysia japonica imposed by different plant densities. 1. Tiller numbers per unit area increased as plant density heightened. Differences in num ber between densities at higher densities than 120 D were of no significance. 2. Tiller numbers per clone attained by 110 days after transplanting were 126 at 40D,77 at 80D, 67 at 120D, 54 at 160D, and 41 at 200D. A decreasing trend of tiller numbers per clone with increasing density was noticable from 100 days after transplanting onwards. 3. During the growth period, the greatest number of green leaves per unit area were attainedin 90days after transplanting at 160D and 200D, and 100 days after transplanting at 40D, 80Dand 120D. Thus the period to reach the maximum green leaf number with the high plantdensity was likely to be earlier that with the low plant density. 4. Stolon growth up to 80 days after transplaning was relatively slow, but from 80 daysonwards, the growth quickened to range from 1.9 m/clone at 40D to 0.6m/clone at 200Din 200 days after transplanting, these followed by the stolon node produced. 5. Plant density did not affect stolon weight/clone and root weight/clone until 80 daysafter transplanting. 6. DM weight of root was heavier in the early period of growth than that of stolon, butthis trend was reversed in the late period of growth : DM weight of stolon was much higherthan that of root.EXPERIMENT Ill. Vegetative growth of Zoysia japonica and Zoysia matrella as affected by nitrogen and clipping height. 1. When no nitrogen was applied to Zoysia japonica, leaf blade which appeared during theAugust-early September period remained green for a perid of about 10 weeks and even leavesemerged in rate September lived for 42 days. However, leaf longevity did not exceed 8 weeks asnitrogen was applied. In contrast the leaf longevity of Zoysia matrella which emerged during the mid August-earlySeptember period was 11 weeks and, under the nitrogen applied, 9 weeks, indicating that thelife-spen of individual leaf of Zoysia matrella may be longer than that of Zoysia japorica. Clipping height had no effect on the leaf longevity in both grasses. 2. During the July-August period, tiller number, green leaf number and DM weightof Zoysia japonica were increased significantly with fertilizer nitrogen, but were not with twolevel of clipping height. This trend was reversed after late September ; no effect of nitrogen wasappeared. Instead, lax clipping increased tiller number, green leaf number and DM weight. Greenleaves stimulated by lax clipping resulted in the occurrance of more dead leaves in late October. 3. Among the stolons outgrown until early September, the primary stolon was not influencedby nitrogen and clipping treatments to produce only 2-3 stolons. However, 1st branch stoIon asaffected by nitrogen increased significantly, so most of stolons which occurred consisted of 1st branch stolons. 4. Until early September, stolon length obtained at nil nitrogen level was chiefly caused bythe primary stolons. By applying nitrogen, the primary stolons of Zoysia japonica waslonger than 1st branch stolons when severe clipping was involved and in turn, shorter than 1stbranch stolons when lax clipping was concerned. In Zoysia matrella, 1st branch stolons were muchlonger than the primary stolon when turf was clipped severely but in conditions of lax clippingthere was little difference in length between primary and 1st branch stolons. 5. Stolon nodes of both Zoysia japonica and Z. matrella were positively influenced by nit rogen, but no particular increase by imposing clipping height treatment was marked in Zoysiamatrella. Although the stolon of Zoysia japonica grew until late October, the growthstimulated by nitrogen was not so remarkable as to exceed that by nil N.

  • PDF

A Three-year Study on the Leaf and Soil Nitrogen Contents Influenced by Irrigation Frequency, Clipping Return or Removal and Nitrogen Rate in a Creeping Bentgrass Fairway (크리핑 벤트그라스 훼어웨이에서 관수회수.예지물과 질소시비수준이 엽조직 및 토양 질소함유량에 미치는 효과)

  • 김경남;로버트쉬어만
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.2
    • /
    • pp.105-115
    • /
    • 1997
  • Responses of 'Penncross' creeping bentgrass turf to various fairway cultural practices are not well-established or supported by research results. This study was initiated to evaluate the effects of irrigation frequency, clipping return or removal, and nitrogen rate on leaf and soil nitrogen con-tent in the 'Penncross' creeping bentgrass (Agrostis palustris Huds.) turf. A 'Penncross' creeping bentgrass turf was established in 1988 on a Sharpsburg silty-clay loam (Typic Argiudoll). The experiment was conducted from 1989 to 1991 under nontraffic conditions. A split-split-plot experimental design was used. Daily or biweekly irrigation, clipping return or removal, and 5, 15, or 25 g N $m-^2$ $yr-^1$ were the main-, sub-, and sub-sub-plot treatments, respectively. Treatments were replicated 3 times in a randomized complete block design. The turf was mowed 4 times weekly at a l3 mm height of cut. Leaf tissue nitrogen content was analyzed twice in 1989 and three times in both 1990 and 1991. Leaf samples were collected from turfgrass plants in the treatment plots, dried immediately at 70˚C for 48 hours, and evaluated for total-N content, using the Kjeldahl method. Concurrently, six soil cores (18mm diam. by 200 mm depth) were collected, air dried, and analyzed for total-N content. Nitrogen analysis on the soil and leaf samples were made in the Soil and Plant Analyical Laboratory, at the University of Nebraska, Lincoln, USA. Data were analyzed as a split-split-plot with analysis of variance (ANOVA), using the General Linear Model procedures of the Statistical Analysis System. The nitrogen content of the leaf tissue is variable in creeping bentgrass fairway turf with clip-ping recycles, nitrogen application rate and time after establishment. Leaf tissue nitrogen content increased with clipping return and nitrogen rate. Plots treated with clipping return had 8% and 5% more nitrogen content in the leaf tissue in 1989 and 1990, respectively, as compared to plots treated with clipping removal. Plots applied with high-N level (25g N $m-^2$ $yr-^1$)had 10%, 17%, and 13% more nitrogen content in leaf tissue in 1989, 1990, and 1991, respectively, when compared with plots applied with low-N level (5g N $m-^2$ $yr-^1$). Overall observations during the study indicated that leaf tissue nitrogen content increased at any nitrogen rate with time after establishment. At the low-N level treatment (5g N $m-^2$ $yr-^1$ ), plots sampled in 1991 had 15% more leaf nitrogen content, as compared to plots sampled in 1989. Similar responses were also found from the high-N level treatment (25g N $m-^2$ $yr-^1$ ).Plots analyzed in 1991 were 18% higher than that of plots analyzed in 1989. No significant treatment effects were observed for soil nitrogen content over the first 3 years after establishment. Strategic management application is necessary for the golf course turf, depending on whether clippings return or not. Different approaches should be addressed to turf fertilization program from a standpoint of clipping recycles. It is recommended that regular analysis of the soil and leaf tissue of golf course turf must be made and fertilization program should be developed through the interpretation of its analytic data result. In golf courses where clippings are recycled, the fertilization program need to be adjusted, being 20% to 30% less nitrogen input over the clipping-removed areas. Key words: Agrostis palustris Huds., 'Penncross' creeping bentgrass fairway, Irrigation frequency, Clipping return, Nitrogen rate, Leaf nitrogen content, Soil nitrogen content.

  • PDF

Effect of nitrogen application and clipping height on the vegetative growth of Korean lawn grass (Zoysia japonica Steud.) and Manilagrass (Zoysia mat rella (L.) MERR.) during September/October (질소시용 및 예초고가 한국 잔디(Zoysia japonica Steud.) 및 금잔디(Zoysia matrella MERR.)의 생육후기 영양생장에 미치는 영향)

  • 심재성;윤익석
    • Asian Journal of Turfgrass Science
    • /
    • v.1 no.1
    • /
    • pp.7-17
    • /
    • 1987
  • The experiment with two levels of nitrogen (0. and 300kg / ha / year) and two levels of clipping height (1.5cm and 4cm) was conducted on the field during the period 3 June to 23 October 1985. Clonal lines of korean lawngrass ( Zoysia japonica Steud.) and manilagrass ( Zoysia matrella ( L.) Merr.)of Daejon origin were established in June, as individual clone in rows 30cm apart with a 40cm spacing between clones, actually 4 clones each plot. The results obtained were as follows : 1. When no nitrogen was applied to korean lawngrass, leaf blade which appeared during the August / early September period remained green for a period of about 10 weeks and even leaves emerged in late September lived for 42 days. However, leaf longevity did not exceed 8 weeks as nitrogen was applied. In contrast the leaf longevity of manilagrass which emerged during the mid - August / early September period was 11 weeks and, under the nitrogen applied, 9 weeks, indicating that the life - saen of individual leaf of manilagrass may be longer than that of korean lawngrass. Meanwhile, clipping height had no effect on the leaf longevity in both grasses. 2. During the July / August period, tiller number, green leaf number and DM weight of korean lawngrass were increased significantly with fertilizer nitrogen, but were not with two levels of clipping height. This trend was reversed after late September : no effect of nitrogen was appeared. Instead, lax clipping increased tiller number, green leaf number and DM weight. Green leaves stimulated by lax clipping resulted in the occurrance of more dead leaves in late October. 3. The increase of tiller number, green leaf number, and DM weight of korean lawngrass due to nitrogen application appeared to be of significance in early September. Unlike korean lawngrass, however, this significant increase was maintained to late October when new green leaves still emerge. Clipping height had little effect on the growth of manilagrass by early September, but since then, lax clipping stimulated leaf appearance, possibly resulting in a remained green color of manilagrass turf. 4. Among the stolons outgrown until early September, the primary stolon was not influenced by nitrogen and clipping treatments to produce only 2 - 3 stolons. However, 1st branch stolon as affected by nitrogen increased significantly, so most of stolons which occurred consisted of 1st branch stolon. 5. Until early September, stolon length obtained at nil nitrogen level was chiefly caused by lengthening the primary stolons. By applying nitrogen the primary stolons of korean lawngrass was longer than 1st branch stolons when severe clipping was involved and in turn, shorter than 1st branch stolons when lax clipping was concerned. In manilagrass, 1st branch stolons were much longer than the primary stolons when turf was clipped severely but in conditions of lax clipping, there was little difference in length between primary and 1st branch stolons. 6. Stolon nodes of both korean lawngrass and manilagrass were positively influenced by nitrogen, but no particular increases by imposing clipping height treatment was marked in manilagrass. Although the stolon of korean lawngrass was grown until late october, the growth stimulated by nitrogen was not so remarkable as to exceed that a by nil N. 7. The thickness of korean lawngrass and manilagrass was greatest in late September, but that of manilagrass did not differ significantly from that in late October. 8. The response of stolon length of korean lawngrass to lax clippings was not so great in late October as to that to severe clippings. On the other hand, the positive effect of lax clippings to stolon length in m anilagrass was confirmed even in late October.

  • PDF

Chemical Composition, Herbage Yield and Nutritive Value of Panicum antidotale and Pennisetum orientale for Nili Buffaloes at Different Clipping Intervals

  • Sarwar, Muhammad;Mahr-un-Nisa, Mahr-un-Nisa;Khan, M. Ajmal;Mushtaque, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.176-180
    • /
    • 2006
  • This study was carried out to establish clipping interval of Pennisetum orientale (PO) and Panicum antidotale (PA) to get maximum biomass production with optimal nutritional value for Nili buffaloes. Two clipping intervals i.e. $CI_1$, and $CI_2$ (clipped after every one and two months, respectively) were studied for both grasses. The data on various parameters were compared with PO and PA each clipped at 4 months of age (control). Leaf to stem ratio in both PO and PA declined with increasing clipping interval. Concentration of dry matter (DM) and organic matter (OM) increased (p<0.05) whereas crude protein contents decreased with increasing clipping interval in both grasses. Crude protein and dry herbage yields in PO and PA increased (p<0.05) with increasing clipping interval. The DM and neutral detergent fiber (NDF) digestibilities of PO and PA in ruminally cannulated buffalo bulls decreased (p<0.05) due to more lignification with increasing clipping interval. Ruminal extent of digestion, rate of disappearance of DM and neutral detergent fiber of PO and PA decreased in buffaloes while ruminal lag time of these nutrients increased significantly (p<0.05) with increasing clipping interval. The results from the study imply that two month clipping interval for both PO and PA grasses favored higher biomass with greater nutritional value for Nili buffaloes and sustained grass vigor.

Influence of Re-growth Interval on Chemical Composition, Herbage Yield, Digestibility and Digestion Kinetics of Setaria sphacelata and Cenchrus ciliaris in Buffaloes

  • Mahr-un-Nisa, Mahr-un-Nisa;Khan, M. Ajmal;Sarwar, Muhammad;Mushtaque, M.;Murtaza, G.;Lee, W.S.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.381-385
    • /
    • 2006
  • This study examined the influence of re-growth periods on chemical composition, biomass production, nutritive value and digestion kinetics of Setaria sphacelata (SS) and Cenchrus ciliaris (CC) in ruminally cannulated buffalo bulls. Two re-growth intervals i.e. clipping every month ($CI_1$) and clipping after every two months ($CI_2$) were compared with the control (clipped after 4 months). Mean values of leaf to stem ratio in SS and CC grasses were decreased (p<0.05) with increasing re-growth interval. The lowest leaf to stem ratio was recorded in control plots of both grasses. In both grasses, increasing growth period increased the concentrations of dry matter (DM), neutral detergent fiber (NDF) and organic matter (OM) and decreased crude protein (CP). Mean dry herbage, OM and CP yields of SS and CC were increased (p<0.05) with increasing re-growth interval. Ruminal DM and NDF digestibilities of SS and CC were decreased (p<0.05) with increasing interval. Ruminal rate of DM and NDF disappearance was higher while the ruminal lag time of these nutrients was lower with monthly than with bi-monthly clipping interval. The results from present study imply that SS and CC clipped after every two months is more beneficial than when clipped every month or every four months in terms of optimal biomass with adequate nutritional value for buffaloes.

Comparison of Grain Filling Characteristics by Source-Sink Size Control in Glutinous and Non-glutinous Near Isogenic Line of Rice (근동질유전자 계통인 찰벼와 메벼의 전엽과 절영처리에 따른 등숙특성 비교)

  • 김춘송;안종국;정일민;강항원;이재생;고지연;박성태
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.243-250
    • /
    • 2004
  • Two cultivars which are glutinous (Hawcheongchalbyeo) and non-glutinous (Hawcheongbyeo) near isogenic line of rice, were used for this study. The objective of this experiment was to gain the basic information for increasing grain yield of waxy rice by means of source and sink size control. In both Hwacheongbyeo and Hawcheongchalbyeo, the trend of decrease in total and average spikelet weight was ranked as follows; removal of penultimate leaf< removal of flag leaf< removal of flag leaf and 3ya leaf from the top < removal of flag leaf and penultimate leaf < removal of flag leaf, penultimate leaf, and 3rd leaf from the top. The reduction yale of total and average spikelet weight per panicle of Hwacheongbyeo was higher than those of Hwacheongchalbyeo according to the removal of flag leaf, penultimate leaf, and 3rd leaf from the top. In both cultivars, high-density grain ratio and grain filling ratio of the primary branches were higher Hun those of the secondary branches by leaf clipping treatment. The spikelet number and total spikelet weight per pinicle in both Hwacheongbyeo and Hwacheongchalbyeo were decreased by removal of spikelets on branches compared with control, whereas average spikelet weight and grain filling ratio were increased. The increase rate of average spikelet weight of Hwacheongchalbyeo was much higher than that of Hwacheongbyeo by sink size control. High-density grain ratio by removal of spikelets on branches was higher in Hwacheongchalbyeo, but filled grain ratio was higher in Hwacheongbyeo.

Studies on the Flowering and Maturity in Sesame (Sesamum indicum L.) IV. Effects of Foliage Clipping on the Seed Maturity (참깨의 개화.등숙에 관한 연구 IV. 적엽처리가 참깨의 등숙에 미치는 영향)

  • Lee, Jung-Il;Kang, Chul-Whan;Son, Eung-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.165-173
    • /
    • 1985
  • The objectives of the study were to investigate the effects of foliage clipping on photosynthesis and grain filling for branch and non branch types under the polyethylene film mulch and non mulch conditions in mono cropping and second cropping after barley in sesame (Sesamum indicum L.), and to improve poor grain filling at later flowering time utilizing these data. One thousand grain weight was more decreased in branch type than in non branch type, in polyethylene film mulch condition than in non mulch condition, and in second cropping after barley than in mono cropping by clipping lower part foliage. Twentyfive percent clipping of lower part foliage showed a little increase than no clipping. Matured grain rate also showed same tendency between branch and non branch type and between mono cropping and second cropping after barley as well as 1,000 grain weight except for polyethylene film mulch. Matured grain rate of 25% foliage clipping at 30 days after flowering in non branch type presented a little increase but decreased in branch type. Clipping of higher part leaves were so serious decrease of matured grain rate that higher part leaves at late maturing time have a major role in photosynthesis. Matured grain rate of foliage clipping at 10 days after flowering was decreased in all treatments. Chlorophyll content of higher part leaves at 50% lower part foliage clipping presented 39% increase compared to same positioned leaves of non treatment, and 66% increase by 50% higher part foliage clipping in lower part leaves. Photosynthetic activity was 58% more increased in 50% lower part foliage clipping than no clipping, but seriously decreased in 50% higher part foliage clipping. Therfore, photosynthates of remained lower part leaves could not only support their own demands, but also any contribution to translocation of photosynthates from source to sink at late maturing time. Harvest index was 28% increased in 25% lower part foliage clipping and 13% decreased in 50% higher part foliage clipping compared to no clipping. Leaf area was 48% increased in 50% lower part foliage clipping compared to the same positioned leaves of no clipping, and only 5% increased in higher part foliage clipping. Productivity by foliage clipping compared to non treatment, was highly decreased in branch type than in non branch type, in second cropping after barley than in mono cropping. Little difference was detected between polyethylene film mulch and non mulch conditions. Twenty five percentage of lower part foliage clipping on mono cropping of non branch type appeared 5% and 8% yield increase in each of polyethylene film mulch and non mulch conditions compared to no clipping, and all decreased in other treatments. Mean loss of productivity by foliage clipping at 10 days after flowering was serious than clipping at 30 days after flowering. As the result, contribution to photosynthesis of source at 10 days after flowering are larger than that at 30 days after flowering in sesame. Fifty percent lower part foliage clipping at 10 days after flowering showed so the most serious yield decrease that lower part leaves at that time were considered as the main role leaves for photosynthesis.

  • PDF

The Growth and Thatch Accumulation of Kentucky Bluegrasses as Affected by Cutting Management. Varietal Differences under Removing Clipping Residues (예초관리에 따른 Kentucky bluegrass의 품종간의 생육과 Thatch 축적 I. 예초잔여물의 제거 하에서의 품종간의 차이)

  • 윤용범;이주삼
    • Asian Journal of Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 1992
  • This experiment was carried out in order to study the changes of morphological characters of the growth and thatch accumulation in :3 varieties of Kentucky bluegrass under removing clipping residues as affected by cutting management. The varieties used were Park, Kenhiuc and Newport.The results obtained are as follows; 1. The dry weight of leaf. stem and number of tiller was highest at 22. June and lowest at 21. Aug in alt varieties. And then the dry weight of rhizome, root and thatch increased with growth progressed) Tabte 3). 2. The relationship of the dry weight of biological yield and number of tillers was quadratic ally increased in the growth stage of spring($R^2$= 0.982**), and linearlly increased in the growth stage of autumn(r 0.944*)(Fig. 1). :3. The dry weight of thatch increased as an exponentially equation in alt :3 varieties of Kentucky blue-grass(Fig. 2). Thatch increased rate(TIR) can used to estimate the specifying a quantity of thatch accumulation from the turf. Thatch increase rate equation as follows. where TH$_2$ is the dry weightof thatch at T$_2$ survey time and TH$_1$ is the dry weight of thatch at $TH_1$ is the dry weight of thatch at $T_1$ survey time. $TIR(mg/cm^2/day)=\frac{Ln\;TH_2 - Ln\; TH_1}{T_2 - T_1}$ 4. Correlation coefficients between the dry weight of thatch and leaf weight was -0.633(P>0.05), and number of tiller of tillers was -0.666(P>0.5), respectively. It means that thatch accumu-lation increased with growth depression of leaf and stem.

  • PDF

'Kresek' Disease in Korea III. Varietal Resistance, and Relationship among Pathotype, Multiplication in the Tissue and Disease Development (한국에 있어서의 'Kresek'에 관한 연구 III. 품종저항성 및 균주에 따른 도체내에서의 균증식과 발병과의 관계)

  • Choi Y. C.;Cho Y. S.
    • Korean journal of applied entomology
    • /
    • v.19 no.1 s.42
    • /
    • pp.51-55
    • /
    • 1980
  • The study has been carried to confirm pathogenesity among the isolates which obtained from leaf blight type symptoms and Kresek type symptoms, and also to observe varietal resistance among 29 varieties and/or lines through the introduction of two different pathotypes, of Xanthomonas oryzae, by the use of root clipping and pin prick methods. There was no significant differences among the isolates when their growth in plant tissue were compared. There was certain tendency, however, that the isolates from Kreseked plants showed longer lesion than those from blight type lesions. Both isolates from blight type and Kresek type induced the same degree of Kresek syptoms when they were introduced into plants by root cutting in the suspension prior to transplant. Varietal resistance to 'Kresek' appeared to be the same with those on leaf blight type though Wase Aikoku group varieties showed Kresek symptoms which is not the case with leaf blight type. IR 20 in Kogyoku group varieties showed highly resistant reaction to Kresek type. Root clipping method induced the more of Kresek than those by pin pricking method.

  • PDF

Growth and Quality Changes of Creeping Bentgrass by Application of Liquid Fertilizer Containing Humic Acid (부식산 함유 액상비료 시비에 따른 크리핑 벤트그래스의 생육과 품질 변화)

  • Kim, Young-Sun;Lee, Tae-Soon;Cho, Sung-Hyun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.272-281
    • /
    • 2017
  • This study was conducted to evaluate the effect of liquid fertilizer containing humic acid (LFHA) on changes of creeping bentgrass quality and growth. Treatments were designed as follows; control fertilizer (CF), HA-1 ($CF+1ml\;m^{-2}LFHA$ LFHA), HA-2 ($CF+2ml\;m^{-2}LFHA$ LFHA), and HA-3 ($CF+4ml\;m^{-2}LFHA$). As compared with CF, soil chemical properties and chlorophyll content of clipping of LFHA treatments were not significantly different. Visual quality in both of HA-2 and HA-3 treatments was higher than that of CF treatment from September to November, and clipping yield on October 27. Shoot density, root length, and the content of nitrogen, phosphorus or potassium were increased by application of LFHA. The clipping yield was positively correlated with phosphorus content, potassium content or shoot density. Similarly, LFHA level was proportionate to clipping yield of creeping bentgrass, and N, P, K contents in the leaf tissue. These results generally demonstrated that the application of LFHA improved the growth and quality of creeping bentgrass by increase of N content or P in leaf tissue.