• Title/Summary/Keyword: leaf area rate

Search Result 546, Processing Time 0.025 seconds

Effects of Nitrogen Fertilization on Growth of Populus sibirica and Ulmus pumila Seedlings and Soil Properties in a Semi-Arid Area, Mongolia (몽골 반건조지에서 질소 시비가 백양나무와 비술나무 묘목의 생장 및 토양 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kim, Seongjun;Park, Min Ji;An, Jiae;Kang, Hoduck;Yi, Myong-Jong;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • This study was conducted to investigate the effects of different levels and types of nitrogen fertilizer on seedlings and soil chemical properties in a semi-arid area, Mongolia. 2-year-old Populus sibirica and 4-year-old Ulmus pumila seedlings were planted in May 2014. Six treatments with three levels of nitrogen (low-level: urea $5g\;tree^{-1}$; medium-level: urea $15g\;tree^{-1}$, ammonium sulfate $33g\;tree^{-1}$, urea $15g\;tree^{-1}$ with potassium phosphate $10g\;tree^{-1}$; high-level: urea $30g\;tree^{-1}$) were applied and for the medium-level of nitrogen, different types of fertilizer were treated. Survival rate, root collar diameter (RCD) growth rate, leaf nitrogen concentration of seedlings, and soil chemical properties were determined in August 2014. The seedling survival rate of both species decreased as the level of nitrogen increased. This result can be explained by water stress caused by nitrogen fertilization in arid regions. The RCD growth rate of P. sibirica was significantly decreased by the treatment of high-level of nitrogen due to excessive nitrogen fertilization, and was increased by the treatment of ammonium sulfate due to sulfur which might promote nitrogen uptake. The leaf nitrogen concentration of P. sibirica did not change by the treatment of low-level of nitrogen, and was increased by the treatment of medium-level of nitrogen. There were no significant differences in the RCD growth rate and the leaf nitrogen concentration of U. pumila among the six treatments. None of soil chemical properties was affected by nitrogen fertilization. Overall, the low-level of nitrogen showed no effect on seedlings and soil chemical properties, except on survival rate of U. pumila and the high-level of nitrogen was considered excessive fertilization. Continuous monitoring of medium-level nitrogen fertilization including the ammonium sulfate, which increased early growth of seedlings, would be needed to elucidate the effect of fertilization on seedling growth and soil properties in a semi-arid region.

An Aspect of Occurrence and Chemical Properties of Grey Leaf Tobacco (Type III) (연초 III형 Grey엽의 발생양상과 화학성분 특성)

  • Lee, Chul-Hwan;Jin, Jeong-Eui;Han, Chul-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.107-112
    • /
    • 1996
  • The occurrence and chemical properties of grey tobacco leaves (Type III) found in 1995 crop of flue-cured tobacco cultivated in paddy field were investigated to compare with those of normal leaves. Cured leaves of NC82 were separated by visual characters into 3 classes of slight, fair and severe symptoms of grey leaf by the percentage of grey parts to whole leaf area. Number of samples classified with discoloring portion was the order of greyish brown > reddish brown > greyish yellow, respectively. Grey leaves of this type were mostly found among the leaves harvested from upper stalk position, and it was estimated that growth rate of upper leaves also influenced on the occurrence of grey leaves. Grey leaves showed remarkably lower b* and L* values than those of normal leaves, while a* value was mostly higher in grey leaves. These tendencies in chromatic aberration showed more remarkable difference in the degree of grey symptoms. Chemical analyses of grey leaf samples indicated that they contained less total nitrogen and nicotine, and more total sugar and starch than those of normal leaves. In chemical traits, these tendencies were accordance with the degree of grey symptoms, and within the same leaf, grey parts were decreased in total nitrogen and ether extract content compared with those of normal parts, but there was no difference in nicotine and Cl contents. Key words : grey leaf tobacco (type III), grey symptom, color, chemical properties.

  • PDF

Effect of Application Level of Calcium Hydroxide on Brown-Leaf Symptom and Root Yield of Panax ginseng Cultivated in Paddy Soil (인삼 논재배에서 석회 시용에 따른 갈반형 황증 발생 억제 효과)

  • Lee, Sung Woo;Park, Kyung Hoon;Lee, Seung Ho;Jang, In Bok;Lan, Jin Mei;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.150-154
    • /
    • 2015
  • Physiological disorders such as symptoms in leaf colored with brown spots are so many occurred in ginseng garden cultivated with paddy soil. This study was carried out to inhibit the symptoms of brown-colored leaf in 3-year-old ginseng by fertilizing calcium hydroxide [$Ca(OH)_2$] of 100 ~ 400 kg per 10a on paddy soil before transplant of seedling. Soil pH was rapidly increased, while Fe was decreased in soil by the increase of application level of calcium hydroxide. Soil pH was increased from 4.53 to 6.18 when calcium hydroxide was fertilized at level of 100kg per 10a. The content of Fe in ginseng leaf was decreased more than the control by fertilizing calcium hydroxide in soil. Ratio of brown-colored leaf and plant height and leaf area were decreased by the increase of calcium hydroxide. Ratio of survived root and yield of root showed the peak at the application level of 100 kg per 10a, and both of them were gradually decreased by the increase of calcium hydroxide. The decrease of missing plant rate above the application level of 200 kg per 10a had a negative effect on the decrease of yield of root.

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.

Effect of Grain Specific Gravity on Seedling Growth and Vascular Bundle Development of Two Rice Cultivars (벼종자의 비중차이가 유묘생장 및 유관속 발달에 미치는 영향)

  • Chae, Je-Cheon;Lee, Dong-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.1
    • /
    • pp.62-67
    • /
    • 1996
  • High density (HD) grains is associated with seedling vigor. Studies were conducted on the relationship of different grain densities and vascular bundle(VB) development and seedling growth. IR58 (indica type) and Unbong 7 (japonica type) were used in this experiment. HD grains had more and bigger VB in the leaf blade and sheath than poor density grain at seedling stage. IR58 had more large VB at the leaf compared with Unbong 7. Higher development of VB in seedling of HD grains can increase transport of assimilate and growth rate. Plant height, leaf number, root growth and dry weight increased with increasing grain density from poor to high. The total area of large VB in the leaf blade and sheath was highly correlated with the dry weight. Higher number and larger area of VB and dry weight can be obtained by using HD grains and these initial advantages can contribute to high yield potential.

  • PDF

Effects of Shading on Growth of 1-year-old Cornus controversa H$_{EMSL}$, Seedlings (피음이 층층나무 1년생 유묘의 생장에 미치는 영향)

  • 최재형;홍성각;김종진
    • Journal of Korea Foresty Energy
    • /
    • v.19 no.1
    • /
    • pp.20-29
    • /
    • 2000
  • This study was carried out to investigate the effects of shading on the growth of 1 -year-old seedlings of Cornus controversa. The height growth was highest in relative light intensities of 100% and 50%, but relative growth rate in 50% was higher than that in 100% treatment. The growth did not occur under 9% relative light intensity. The root collar diameter growth at different light intensities is similar to height growth. The leaf area was highest in 50% relative light intensity, and the leaf area under the light intensity was small compared with the control. SLA and LAI of seedlings increased with decreasing relative light intensity. The LAR and LWR of seedlings increased with decreasing light intensity, but LWR decreased at 9% relative light intensity. The dry weight of root, stem, leaf and branch, and the number of branch and leaf decreased with decreasing relative light intensity. T/R ratio was highest in 17% and 30% relative light intensity. Lateral root growth decreased with decreasing light intensity except for that in 50% light intensity.

  • PDF

Seasonal Changes of Leaf Damage and Parasitism of the Apple Leaf Miner, Phyllonorycter ringoniella(Matsumura) in Relation to the Management and Varieties in Apple Orchards (사과원(園) 관리(管理) 및 품종(品種)에 따른 사과굴나방의 피해(被害)와 기생율(寄生率) 변동(變動))

  • Lee, Soon-Won;Kim, Seok-Hwan;Yiem, Myong-Soon;Lee, Moon-Hong;Hyun, Jai-Sun
    • Korean journal of applied entomology
    • /
    • v.24 no.3 s.64
    • /
    • pp.157-162
    • /
    • 1985
  • Leaf damage rate and actual damaged leaf area by the apple leaf miner (ALM), Phyllonorycter ringoniella(Matsumura), and its parasitism were investigated in 1982 and 1983 in apple orchards. Percent leaf damage was higher in the occasionally sprayed orchards than in the periodically sprayed orchards from May to August, but the trend was reversed after September. Seasonal changes of the leaf damage seemed to be different with the varieties of apple trees. A few species of Eulophidae and Holcothorax testaceipes R. of Encyrtidae were the predominant parasites of the ALM. Overall percent parasitism was highest in the 5th (overwintering) generation, and conspicuously decreased in the 3rd-4th generation (July-August) when insecticides were sprayed periodically. Actual damaged leaf area per mine of the ALM was apparently different with the generations; $0.67cm^2$ for the 1st, $0.8{\sim}0.9cm^2$ for the 2nd-4th on the first growth shoot, and $1.49cm^2$ for the overwintered generation on the second growth shoot. When ALM leaf damage rate was about $53{\sim}73%$, the decrease in the photosynthetic area to the damaged leaf was about $6{\sim}8%$.

  • PDF

Studies on the morphological variation of plant organs of elongating node-part in rice plant (수도 신장 절위 경엽의 형태변이에 관한 연구)

  • 김만수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.1-35
    • /
    • 1969
  • Attempts were made to obtain the fundamental knowledge on the quantitative constitution status of leaves and stem of elongating node-part, and the relationships between these morphological characteristics along with the nitrogen contents of leaves and grain yield were examined varing application amounts of nitrogen in rice plant. I. The agronomic characteristics of leaves and nodes of elongation node-part (4-node parts from the top of stem) were observed at heading stage with 20 leading rice varieties of Kang Won district. The results are summarized as follows: 1. Leaf area magnitude of the flag and the fourth leaf was smaller than that of the second and the third with the average value of flag leaf 18.61 $cm^2$, the second leaf 21.84 $cm^2$, the third 21.52 $cm^2$ and the fourth 18.56 $cm^2$. The weight of leaf blade showed an isotonic tendency with the magnitude of leaf area with the value of the flag leaf 97.0 mg, the second leaf 117.1 mg, the third 115.4 mg, and the fourth 95.3 mg. The weight of each leaf sheath was remarkably larger at the higher node-part than at the lower node-part of the stem with the value of flag leaf sheath 176.3 mg, the second 163.7 mg, the third 163.4 mg and the fourth 123.9 mg. Accordingly, the total leaf weight of each part was larger at the second and the third leaf than at the first and the fourth. Total plant weight of each part (weight of leaf blade, leaf sheath, and culm) also was larger at the middle node-part. 2. Coefficients of variation for the varietal differences of the morphological characteristics of elongating node-part were 12.75% for the leaf area, 15.29% for the weight of leaf blade, 15.90%, for the weight of leaf sheath, 11.42% for the weight of internode, 15.45% for the leaf weight (leaf blade & leaf sheath) and 13.24% for the straw weight. And these coefficient values of the most characteristics were, on the whole, smaller at the second and the third node-part than at the first and the fourth node-part, but the coefficient value of the internode weight was rather small at the third and fourth node-part. 3. Constitutional ratio of each plant organ to the total plant weight in term of dry matter weight (excluding head and root wight) was 39.2% for the leaf sheath, 34.2% for the culm, 26.6% for the leaf blade. And ocnstitutional ratio of leaf sheath in term of dry matter weight was larger at the higher position in contrast with that of culm. 4. Average weight ration of leaf blade to culm, leaf sheath to culm, leaf blades to sheath and the leaf blades to culm plus leaf sheath were 77.7 %, 114.5%, 67.9% and 36.2%, respectively. With regard to the position of the plant organ, the weight ratio of leaf blade to culm and that of leaf sheath to culm were larger at higher part in contrast with that of leaf blade to leaf sheath. 5. Generally, there founded deep relationships between grain yield and each morphological characteristics of plant organ of elongating node-part as follows; Correlation coefficient between total area of 4 leaves (from flag to the fourth leaf) and grain yield was ${\gamma}$=0.666$^{**}$ In regard to the position of leaves, correlation coefficient values of flag, the second, the third and the fourth leaf were ${\gamma}$=0.659$^{**}$, ${\gamma}$=0.609$^{**}$, ${\gamma}$=0.464$^{*}$ and ${\gamma}$=0.523$^{*}$, respectively. Correlation coefficient between total weight of leaf blades and the grain yield was ${\gamma}$=0.678$^{**}$. In regard to the position of leaves, that of flag leaf was ${\gamma}$=0.691$^{**}$, and ${\gamma}$=0.654$^{**}$ for the second leaf, ${\gamma}$=0.570$^{**}$ for the third, and ${\gamma}$=0.544$^{**}$ for the fourth. Correlation between the weight of leaves (blade weight plus sheath weight) and the grain yield showed similar values. In the relationship between plant weight and grain yield there also was significant correlation, but with highly significant value only for the first node-part. There appeared correlation between total weight of leaf sheath and grain yield with the value of ${\gamma}$=0.572$^{**}$ and in regard to the position of each leaf sheath the values were ${\gamma}$=0.623$^{**}$ for the flag leaf, ${\gamma}$=0.486$^{**}$ for the second leaf, ${\gamma}$=0.513$^{**}$ for the third, ${\gamma}$=0.450$^{**}$ for the fourth. However, there was no significant correlation between culm weight and grain yield. 6. With respect to in gain yield, varietal differences in magnitude of leaf area, weight of leaf blade, leaf weight per unit area, weight of leaf sheath, culm weight, total leaf and stem weight were larger in the case of high yielding varieties and decreased in accordance with decreasing yield. And this tendency also was shown in the varietal differences of magnitude of each part. Variation in magnitude of each part for the leaf area, weight of leaf blade, culm weight was significantly small in high yielding varieties compared to low yielding varieties. 7. Plant constitutional ratio of each organ of the elongating node-part in term of weight magnitnde varied to som extent according to varieties indicating leaf blade 27.6%, leaf sheath 39.5%, culm 32.9% in the case of high yielding varieties, leaf blade 25.5%, leaf sheath 38.1%, culm 36.4% in the case of low yielding varieties, and medium yielding varieties showed intermadiate values. 8. Far higher values of the weight ration of leaf blade to culm and leaf sheath to culm were given to the high yielding varieties compared to low yielding varieties. And medium yielding varieties showed intermadiate values. II. Effects of application rate of nitrogen on the morphological characteristics of the elongating node-part, nitrogen content of leaf blade, and their relation with the grain yield of the rice were observed with 3 rice varieties; Shin No.2, Shirogane, and Jinheung varying application amounts of nitrogen as 8kg, 12kg and 16kg per 10 are. 1. As for the variation of morphological magnitude s affected by the amounts of nitrogen application, total leaf area (4 leaves from the flag leaf) increased to 16.5% at 12kg N plot, and about 30% at 16kg N polt compared to 8kg N plot and total weight of leaf blade also increased to similar extent, respectively, in contrast with weight of leaf sheath increasing 4.9% and 7.8%, respectively. However, the weight of culm decreased to 1.5% and 11.2%at the 12kg N plot and 16kg N plot, respectively, and these decreasing rate was noted at the nodes of lower part. 2. As for the verietal differences in variation of morphological magnitude as affected by the amount of nitrogen fertilization, leaf area coefficient value of variation of the total leaf area was 15.40% for Shin No. 2, 12.87% for Shirogane, and 10.99% for Jinheung. With respect to the position of nodes, the largest variation of leaf blade magnitude was observed at the fourth for Shin No. 2, the second for Shirogan, and flag leaf for Jinheung. And there also was an isotonic varietal difference in the weight of leaf blade. Variation in total culm weight showed varietal differences with the coefficient value of 7.72% for Shin No.2, 12.11% for Shirogane, and 0.94% for Jinheung. There also was varietal differences in the variation according to the position of nodes. 3. Variation of each elongating node-part related to the fertilization amount decreased with the increase of fertilization amount in the items of leaf area, weight of leaf sheath, culm weight, but weight of leaf sheath varied more at heavier fertilization than at others. 4. Constitutional ratio of each organ excluding head also varied with fertilization amount; constitutional ratio of leaf blade increased much with the increasing amount of fertilization in contrast with the response of culm eight. However, constitutional ration of the weight of leaf sheath was not much affected. 5. Lower value of the ration of leaf blade to culm was given to the 8kg N per 10 are plot, and the ratio of leaf blade to leaf sheath decreased with the increasing amount of fertilization in contrast with the increase in the ratio of leaf sheath to culm. however, the ration of leaf blade to culm plus leaf sheath decreased. 6. With the increase of nitrogen fertilization, leaf area, weight of leaf blade and leaf sheath increased. Accordingly, grin yield also increased to some extent. It was noted that culm weight was changed inversely to the changes in grain yield, but the degree of this variation varied with varietal characteristics. 7. Nitrogen content of leaves at heading and fruiting stage varied with the fertilization amount, and average nitrogen content of leaves of the varieties used 2.19%, 2.49% and 2.74% at the plot of 8kg N, and 12kg N and 16kg N per 10 are, respectively, at heading time, and 0.80%, 0.92% and 1.03% at each plot at fruiting stage. Thus, nitrogen content of leaves increased much with the increasing amount of fertilization, and higher value was given to the leaves on the higher position of elongating node-part. 8. There also was variation of nitrogen content of leaves in accordance with the varieties. However higher grain yield was obtained from the plants retaining higher nitrogen content in leaves at heading or fruiting stage.

  • PDF

The Relations between Growth and Physiological Characteristics of Potted Ginkgo Biloba L. Seedlings Treated with Simulated Acid Rain (人工酸性雨가 處理된 盆植한 은행나무幼苗의 生長과 生理的 特性과의 相關)

  • Kim, Gab-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.13-26
    • /
    • 1987
  • One-year-old seedlings of Ginkgo biloba, potted in three different soils (nursery soil, mixed and sandy soil), were treated with simulated acid rain (pH 2.0, 3.0, 4.0 and 5.0) and tap water (control, pH 6.4) during the growing seasons (1985. 4. 28 - 1985. 10. 19) to examine the effects of acid rain on growth and physiological characteristics, and the relations between seedling growth and physiological characteristics. The results obtained in this study were as follows: 1. The effects of soil types on the total, top and root dry weight per seedling were significant at 5% level, and those of the pH of the rain treated at 1% level. The total dry weight of the pH 3.0 sub-plots was the highest for nursery soil, while for mixed and sandy soils, those of the control and the pH 5.0 sub-plots were the highest, respectively. 2. The leaf surface areas of pH 2.0 sub-plots severely decreased after July, but those of other sub-plots were not affected. The correlations between growth and leaf surface area differed among soil-types, however, the highest positive correlation was found in September. 3. The injured leaf rate increased with decreasing pH levels of acid rain. Highly negative correlations between growth and injured leaf rate were found. 4. The lower the pH level of acid rain treated was, the more the chlorophyll content was measured at the beginning of treatment, and the more severely it decreased at late growing season. A negative correlations were found in August, September and Octobfer. 5. The photosynthetic ability decreased rapidly after July with decreasing pH levels. A highly positive correlation between growth and photosynthetic ability was found in August.

  • PDF

Studies on the Optimum Light Intensity for Growth of Punux ginseng ( I ) Effects of Light Intensity on Growth of Shoots and Roots of Ginseng Plants (인삼생육의 최적광량에 관한 연구 제1보. 광도가 인삼의 지상부생육 및 근수량에 미치는 영향)

  • 이종화;이종철
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.38-45
    • /
    • 1982
  • To determine the optimum light intensity for growth of ginseng plants, change of temperature, moisture content in son, occurrence alternaria blight, defoliation rate, chlorophyll contents, and growth of shoots and roots were investigated under different light intensity such as 5%, 10%, 20% and 30% light transmittance rare(L.T.R.). The results obtained were as follows. 1. Maximum temperature under the shading was increased as the increase of light intensity, whereas soil moisture content decreased 2. As the increase of light intensity, stem and Peduncle length, leaf area, and chlorophyll contents decreased significantly but length and width of the leaf was not significant, while stem diameter, special leaf weight and chlorophyll a/chl. b ratio increased 3. Stem color was shown dark purp!e as the increase of light intensity. 4. Photosynthesis during the day was highest at 9 A.M. and decreased as time passed in all plots. The means of photouynthesis during the day showed in the order of 20%, 10%, 30%, 5% L.T.R., and optimum light intensity for highest photosxthesis was 18.4% L.T.R. by theoritical equation. 5. It was showed a tendency that alternaria leaf blight of ginseng plants was increased as the increase of light intensity. 6. Defoliation rate of ginseng plants was increased as the increase of light intensity, especially all plants were defoliated by late June without shading. 7. Yield percentage of the rear line was increased as the increase of light intensity. Root weight per plant showed in the order of 20%, 10%, 30%, 5% L.T.R., and optimum light intensity for the best yield was 18.5% L.T.R. by theeritical equation.

  • PDF