• Title/Summary/Keyword: leaf area

Search Result 1,904, Processing Time 0.029 seconds

Gene Manipulation of Pin 2(Proteinase Inhibitor II) to the Cottonwood Leaf Beetle(Coleoptera : Chrysomelidae) in Transgenic Poplar(Populus deltodies × P. nigra) (형질전환(形質轉換)된 포플러의 딱정벌레에 대한 저항성(抵抗性) 유전자(遺傳子)(Proteinase Inhibitor II) 발현(發現))

  • Kang, Hoduck
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.407-414
    • /
    • 1997
  • The resistance of a non-transgenic poplar clone, 'Ogy' and three transgenic poplar lines to the cottonwood leaf beetle, Chrysomela scripta F., was evaluated by in vitro feeding. The lines were transformed with neomycin phosphotransferase II(NPT II) as a selectable marker, proteinase inhibitor II(pin2) as a resistance gene, and CaMV 35S as a promoter. An efficient method of sterilizing the beetle eggs and introducing them into plant tissue cultures was developed. The resistance of the transgenic lines was investigated in terms of effects tin leaf area consumed, insect weight, insect developmental stages, and plantlet root dry weight after feeding. Also, leaf area consumed was examined by leaf age as measured through leaf plastochron index(LPI). The leaf area consumed and insect weight were highly significant between transformants and control, and insect development in vitro was significant among the transgenic lines. Larval infestation was the most severe around LPI 4 to 5 which were young leaves. The system provided a quick, highly controlled method to screen developing transgenic plantlets directly.

  • PDF

Comparison of ecophysiological and leaf anatomical traits of native and invasive plant species

  • Rindyastuti, Ridesti;Hapsari, Lia;Byun, Chaeho
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.24-39
    • /
    • 2021
  • Background: To address the lack of evidence supporting invasion by three invasive plant species (Imperata cylindrica, Lantana camara, and Chromolaena odorata) in tropical ecosystems, we compared the ecophysiological and leaf anatomical traits of these three invasive alien species with those of species native to Sempu Island, Indonesia. Data on four plant traits were obtained from the TRY Plant Trait Database, and leaf anatomical traits were measured using transverse leaf sections. Results: Two ecophysiological traits including specific leaf area (SLA) and seed dry weight showed significant association with plant invasion in the Sempu Island Nature Reserve. Invasive species showed higher SLA and lower seed dry weight than non-invasive species. Moreover, invasive species showed superior leaf anatomical traits including sclerenchymatous tissue thickness, vascular bundle area, chlorophyll content, and bundle sheath area. Principal component analysis (PCA) showed that leaf anatomical traits strongly influenced with cumulative variances (100% in grass and 88.92% in shrubs), where I. cylindrica and C. odorata outperformed non-invasive species in these traits. Conclusions: These data suggest that the traits studied are important for plant invasiveness since ecophysiological traits influence of light capture, plant growth, and reproduction while leaf anatomical traits affect herbivory, photosynthetic assimilate transport, and photosynthetic activity.

Quantitative Growth Analysis of White and Reddish Sword Bean

  • Park, Sun-Young;Doo, Hong-Soo;Song, Seung-Kyoung;Ryu, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • Sword bean belongs to the subgenus Canavalia in the genus Canavalia. White and reddish varieties in sword bean were tested to obtain the basic information for improving the yield, quality, and cultural environments through the quantitative growth analysis. Growing plants were sampled at intervals of 10 days from 20 days after sowing. Whole plant weight increased during the period of 11-20 days after sowing in both varieties. The weight of each organ between two varieties increased similarly except leaf area. Whole plant weight changed more close to pod weight than any other characters. The leaf areas of both varieties increased from 50 days after sowing, var. white displayed S type curved line but var. reddish displayed slow S type curved line. The SGR of whole plant weight in both varieties had 3 maxima and 2 minima, 3 maxima and first minimum were shown at the same period but the second minimum was shown at different period. Both varieties showed bimodal curved line. All SGR of each organ and leaf area were shown the 2 maxima and 1 minimum in both varieties. The changes of SLA and LAR were not remarkable between two varieties but these were united together with the maximum of whole plant weight and root weight. ULWR and ULWR were shown similar in both varieties. Reddish variety was more prosperous in early growth stage than white variety because SLA, LAR and LWR were high. In surplus weight, both varieties increased rapidly during the period of 111-120 days after sowing that was applicable to the maximum SGR of pod weight. Surplus weight of var. white increased markedly during the same period comparing those of var. reddish.

  • PDF

Estimation and Validation of the Leaf Areas of Five June-bearing Strawberry (Fragaria × ananassa) Cultivars using Non-destructive Methods (일계성 딸기 5품종의 비파괴적 방법을 사용한 엽면적 추정 및 검증)

  • Jo, Jung Su;Sim, Ha Seon;Jung, Soo Bin;Moon, Yu Hyun;Jo, Won Jun;Woo, Ui Jeong;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.98-103
    • /
    • 2022
  • Non-destructive estimation of leaf area is a more efficient and convenient method than leaf excision. Thus, several models predicting leaf area have been developed for various horticultural crops. However, there are limited studies on estimating the leaf area of strawberry plants. In this study, we predicted the leaf areas via nonlinear regression analysis using the leaf lengths and widths of three-compound leaves in five domestic strawberry cultivars ('Arihyang', 'Jukhyang', 'Keumsil', 'Maehyang', and 'Seollhyang'). The coefficient of determination (R2) between the actual and estimated leaf areas varied from 0.923 to 0.973. The R2 value varied for each cultivar; thus, leaf area estimation models must be developed for each cultivar. The leaf areas of the three cultivars 'Jukhyang', 'Seolhyang', and 'Maehyang' could be non-destructively predicted using the model developed in this study, as they had R2 values over 0.96. The cultivars 'Arihyang' and 'Geumsil' had slightly low R2 values, 0.938 and 0.923, respectively. The leaf area estimation model for each cultivar was coded in Python and is provided in this manuscript. The estimation models developed in this study could be used extensively in other strawberry-related studies.

Machine Vision Based Detection of Disease Damaged Leave of Tomato Plants in a Greenhouse (기계시각장치에 의한 토마토 작물의 병해엽 검출)

  • Lee, Jong-Whan
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.446-452
    • /
    • 2008
  • Machine vision system was used for analyzing leaf color disorders of tomato plants in a greenhouse. From the day when a few leave of tomato plants had started to wither, a series of images were captured by 4 times during 14 days. Among several color image spaces, Saturation frame in HSI color space was adequate to eliminate a background and Hue frame was good to detect infected disease area and tomato fruits. The processed image ($G{\sqcup}b^*$ image) by OR operation between G frame in RGB color space and $b^*$ frame in $La^*b^*$ color space was useful for image segmentation of a plant canopy area. This study calculated a ratio of the infected area to the plant canopy and manually analyzed leaf color disorders through an image segmentation for Hue frame of a tomato plant image. For automatically analyzing plant leave disease, this study selected twenty-seven color patches on the calibration bars as the corresponding to leaf color disorders. These selected color patches could represent 97% of the infected area analyzed by the manual method. Using only ten color patches among twenty-seven ones could represent over 85% of the infected area. This paper showed a proposed machine vision system may be effective for evaluating various leaf color disorders of plants growing in a greenhouse.

Maize with Multiple Ears and and Tillers(MET) IV. Leaf Characteristics of IK Type Maize with Tillers (다얼성 옥수수 연구 IV. IK형 분얼 옥수수의 잎 특성)

  • Choe, Bong-Ho;Lee, Hee-Bong;Lee, Won-Koo;Kang, Kwon-Kyu;Choi, Chang-Yeol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.364-369
    • /
    • 1989
  • Leaf characteristics of main stem and tiller of IK type maize (IK/ /IRI/B68) were compared with those of Jinjoo Ok hybrid which are not usually tillered. A total of nine leaves from flag leaf to the third or the fourth leaf below ear-bearing node were sampled from each stem or tiller. There was no significant difference in mean leaf length between IK/ /IRI/B68 and Jinjoo Ok. But the mean leaf width of IK/ /IRI/ B68 was about 2 cm narrower than that of Jinjoo Ok. The mean leaf area of the IK/ /IRI/B68 was also smaller than that of Jinjoo Ok due to the narrower leaf width. There were not significant differences in mean leaf characteristics between main stem and tillers of IK/IRI/B68. The longest leaf was the leaf below the ear-bearing node and the widest leaf was the leaf just above the ear-bearing node. Mean length. width and area of leaf on main stem and tillers were similar. Coefficients of variation calculated for individual leaf indicated that the leaves near the ear-bearing node were more uniform than others. The leaf area measured was significantly greater than that estimated by formular, length x width x 0.75. New constant to estimate leaf area of tillering maize was derived as 0.8.

  • PDF

Estimation of Leaf Area Using Leaf Length, Leaf width, and Lamina Length in Tomato (엽장, 엽폭, 엽신장을 이용한 토마토의 엽면적 추정)

  • Lee, Jae Myun;Jeong, Jae Yeon;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • One of the most important factors in predicting tomato growth and yield is the leaf area. Estimating leaf area accurately is the beginning of an effective tomato plant growth assessment model. To this end, this study was conducted to identify the most effective model for estimating plant leaf area through the measurement of tomato plant leaves. Leaf area (LA), leaf length (L), leaf width (W), and lamina length (La) were measured for all leaves of 5 plants at two-week intervals. The correlation between LA and tomato-leaf-independent variables showed a strong positive relationship with the formulas La × W, L × W, La + W, and L + W. For LA estimation, a linear model using the formula LA = a + b (La2 + W2) gave the most accurate estimation (R2 = 0.867, RMSE = 88.76). After examining the positions of upper, middle, and lower leaves from September to December, the coefficient of determination (R2) values for each model were 0.878, 0.726, and 0.794 respectively. The most accurate estimation came from the model that used the upper leaves of the plants. The high accuracy of the upper-leaf-based model is judged by the 50% defoliation performed by farmers after October.

Evaluation on the Potential of 18 Species of Indoor Plants to Reduce Particulate Matter

  • Jeong, Na Ra;Kim, Kwang Jin;Yoon, Ji Hye;Han, Seung Won;You, Soojin
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.637-646
    • /
    • 2020
  • Background and objective: The main objective of this study is to measure the amount of particulate matter (PM) reduction under different characteristics of leaves in 18 different species of indoor plants. Methods: First, a particular amount of PM was added to the glass chambers (0.9×0.86×1.3 m) containing the indoor plant (height = 40 ± 20 cm), and the PM concentration were measured at 2-hour intervals. The experiment with the same conditions was conducted in the empty chamber as the control plot. Results: The range of PM reduction per unit leaf area of 18 species of experimental plants was 3.3-286.2 ㎍·m-2 leaf, total leaf area was 1,123-4,270 cm2, and leaf thickness was 0.14-0.80 mm and leaf size 2.27-234.47 cm2. As time passed, the concentration of PM decreased more in the chamber with plants than in the empty chamber. Among the 18 indoor plants, the ones with the greatest reduction in PM2.5 in 2 hours and 4 hours of exposure to PM2.5 were Pachira aquatica and Dieffenbachia amoena. As the exposure time of PM increased, the efficiency of reducing PM2.5 was higher in plants with medium-sized leaves than plants with large or small leaves. The effect of reducing PM2.5 was higher in linear leaves than round or lobed leaves. Plants with high total leaf area did not have advantage in reducing PM because the leaves were relatively small and there were many overlapping parts between leaves. In the correlation between leaf characteristics and PM 2.5 reductions, all leaf area and leaf thickness showed a negative and leaf size showed a positive correlation with PM reduction. Conclusion: The PM reduction effect of plants with medium-sized leaves and long linear leaves was relatively high. Moreover, plants with a large total leaf area without overlapping leaves will have advantaged in reducing PM. Plants are effective in reducing PM, and leaf characteristics are an important factor that affects PM reduction.

Comparison of physiological responses soybean [Glycine max (L.) Merill] of different irrigation Periods

  • Kim, Eun Hye;Chung, Ill Min
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.195-195
    • /
    • 2017
  • The water in the crop cultivation shows difference according to the variety of crop, cultivations period and climatic condition. The growth and development, quantity and fruit enlargements are affected by soil water conditions. In previous study, leaf area and photosynthesis are decreased by lower soil moisture. Other research reported that excess moisture condition at vegetative and reproductive growth period in cultivation of soybean caused highest reduction in crop growth rate (CGR) and dry weights of plant parts. In particular, the damage was bigger during vegetative growth stage than reproductive growth period. Soybean (Glycine max (L.) Merill) is useful and popular crop throughout the world. It is very popular crop in Korea, China, Japan and other Asian countries. Soybeans used in various way including soybean sprouts, paste, soymilk, oil and tofu. Two soybean cultivars grown in four different irrigation conditions were determined for physiological responses. In this study, we examined leaf area (LA), leaf dry weight (LDW), specific leaf area (SLA), root dry weight (RDW) and shoot height (SH) in different water conditions. 50mL/9day irrigation periods showed the lowest contents in LA, LDW, RDW, SH. Water deficit caused increase of leaf Water saturation deficits (WSD), Cheongjakong 3 and Taekwangkong showed increase of leaf water saturation deficits (WSD) in drought conditions and leaf water potential and stomatal conductance were decreased. Photochemical efficiency was decreased in 50mL/1day irrigation condition while, there was decrease of growth and development in 50mL/9day with drought.

  • PDF

A Technique for Selecting Superior Populus alba×Populus glandulosa F1 Clones with Some Physiological Characters (몇 생리적(生理的) 특성(特性)을 이용(利用)한 제일대(第一代) 잡종(雜種) 포플러, Populus alba×Populus glandulosa F1의 우량(優良) clone 선발(選拔)에 관(關)한 연구(硏究))

  • Kim, Gab Tae;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.59 no.1
    • /
    • pp.15-30
    • /
    • 1983
  • To select the superior clones of Populus alba ${\times}$ Populus glandulosa $F_1$, growth and some growth-related physiological characters were examined for thirteen, one-year-old and fifteen, two-year-old clones, respectively at the Seoul National University nursery in Suweon, Clonal differences in growth (total dry weight per tree), leaf area per tree and leaf chlorophyll content per tree at tow-year-old plots were highly significant at the 1% level, but not at one-year-old plots, Highly significant correlation was found between leaf area per tree and total dry weigh per tree (r=0.865), between leaf chlorophyll content per tree and total dry weight per tree (r=0.888), and between photosynthetic ability per tree and total dry weight per tree (r=0.745). The photosynthetic ability and leaf chlorophyll content per unit leaf area of one-year-old plant increased with increasing leaf order number from top. reached maximum value in the twenty-eithth and thirty-third leaves, respectively, and then decreased gradually from those leaved to base, Clones 68-1-54, 66-26-55 and 65-22-11 showed test growth based on leaf area per tree, leaf chlorophyll content per unit leaf area and photosynthetic ability of leaf tissue per unit area. Growth yield of populus alba ${\times}$ P. glandulosa $F_1$ clones could be estimated from either leaf area per tree of leaf chlorophyll content per tree. Therefore, measurements of leaf area and leaf chlorophyll content appear useful to select superior populus clones early growth.

  • PDF