Browse > Article
http://dx.doi.org/10.1186/s41610-020-00174-7

Comparison of ecophysiological and leaf anatomical traits of native and invasive plant species  

Rindyastuti, Ridesti (Purwodadi Botanic Garden, Research Center for Plant Conservation and Botanic Gardens, Indonesian Institute of Sciences)
Hapsari, Lia (Purwodadi Botanic Garden, Research Center for Plant Conservation and Botanic Gardens, Indonesian Institute of Sciences)
Byun, Chaeho (Department of Biological Sciences and Biotechnology, College of Life Sciences & Biotechnology, Andong National University)
Publication Information
Journal of Ecology and Environment / v.45, no.1, 2021 , pp. 24-39 More about this Journal
Abstract
Background: To address the lack of evidence supporting invasion by three invasive plant species (Imperata cylindrica, Lantana camara, and Chromolaena odorata) in tropical ecosystems, we compared the ecophysiological and leaf anatomical traits of these three invasive alien species with those of species native to Sempu Island, Indonesia. Data on four plant traits were obtained from the TRY Plant Trait Database, and leaf anatomical traits were measured using transverse leaf sections. Results: Two ecophysiological traits including specific leaf area (SLA) and seed dry weight showed significant association with plant invasion in the Sempu Island Nature Reserve. Invasive species showed higher SLA and lower seed dry weight than non-invasive species. Moreover, invasive species showed superior leaf anatomical traits including sclerenchymatous tissue thickness, vascular bundle area, chlorophyll content, and bundle sheath area. Principal component analysis (PCA) showed that leaf anatomical traits strongly influenced with cumulative variances (100% in grass and 88.92% in shrubs), where I. cylindrica and C. odorata outperformed non-invasive species in these traits. Conclusions: These data suggest that the traits studied are important for plant invasiveness since ecophysiological traits influence of light capture, plant growth, and reproduction while leaf anatomical traits affect herbivory, photosynthetic assimilate transport, and photosynthetic activity.
Keywords
Plant traits; Invasive; Sempu Island; Imperata cylindrica; Lantana camara; Chromolaena odorata;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vanderwoude C, Scanlan JC, Davis B, Funkhouser S. Plan for national delimiting survey for Siam weed. Queensland Government: Natural Resources and Mines Land Protection Services; 2005.
2 Wang C, Liu J, Xiao H, Zhou J. Differences in leaf functional traits between Rhus typhina and native species. Clean Soil Air Water. 2016;44(11):1591-7.   DOI
3 Weber E. Invasive plant species of the world. A reference guide to environmental weeds. Wallingford: CABI Publishing; 2003.
4 Westoby M. A leaf-height-seed (lhs) plant ecology strategy scheme. Plant Soil. 1998;199:213-27.   DOI
5 Westoby M, Jurado E, Leishman M. Comparative evolutionary ecology of seed size. Trends Ecol Evol. 1992;7:368-72.   DOI
6 Witkowski ETF, Wilson M. Changes in density, biomass, seed production and soil seed banks of the non-native invasive plant, Chromolaena odorata, along a 15 year chronosequence. Plant Ecol. 2001;152:13-27.   DOI
7 Pattinson RR, Goldstein G, Ares A. Growth, biomass allocation and photosynthesis of invasive and native Hawaian rainforest species. Oecologia. 1998;117(4):449-59.   DOI
8 Perez-Harguindeguy N, et al. New handbook for standardize measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167-234.   DOI
9 Poorter H, Remkes C. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia. 1990;83:553-9.   DOI
10 Priyanka N, Joshi PK. A review of Lantana camara studies in India. Int J Sci Res Publ. 2013;3(10):1-11.
11 Pugnaire IF, Valladares F. Handbook of functional plant ecology. New York: Marcel Dekker, Inc.; 1999. p. 81-121.
12 Quan GM, Mao DJ, Zhang JE, Xie JF, Xu HQ, An M. Response of invasive Chromolaena odorata and two coexisting weeds to contrasting irradiance and nitrogen. Photosynthetica. 2015;53:419-29.   DOI
13 MacDonald GE. Cogongrass (Imperata cylindrica)-biology, ecology, and management. Critical Rev Plant Sci. 2004;23(5):367-80.   DOI
14 Marchante H, Freitas H, Hoffmann J. Seed ecology of an invasive alien species, Acacia Longifolia (Fabaceae), in Portuguese dune ecosystems. Am J Bot. 2010;97(11):1780-90.   DOI
15 Maschinski J. Impacts of ungulate herbivores on a rare willow at the southern edge of its range. Biol Conserv. 2001;101:119-30.   DOI
16 Mcalpine KG, Jesson LK, Kubien DS. Photosynthesis and water-use efficiency: a comparison between invasive (exotic) and non-invasive (native) species. Austral Ecol. 2008;33:10-9.   DOI
17 McDowell SCL. Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). Am J Bot. 2002;89:1431-8.   DOI
18 Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR. Global patterns in plant height. J Ecol. 2009;97:923-32.   DOI
19 Moravcova L, Pysek P, Jarosik V, Pergl J. Getting the right traits: reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLoS One. 2015;10(4):e0123634.   DOI
20 Moodley D, Geerts S, Richardson DM, Wilson JRU. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS One. 2013;8(9):e75078.   DOI
21 Morris TL, Esler KJ, Barger NN, Jacobs SM, Cramer MD. Ecophysiological traits associated with the competitive ability of invasive Australians Acacia. Divers Distrib. 2011;17:898-910.   DOI
22 Muniappan R, Reddy GVP, Raman A. Biological control of tropical weeds using arthropods. USA: Cambridge University press; 2009. p. 130-40.
23 Thomson FJ, Moles AT, Auld TD, Kingsford RT. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol. 2011;99:1299-307.   DOI
24 Sukistyanawati A, Pramono H, Suseno B, Cahyono H, Andriyono S. Wild animals inventarisation in Sempu Island Nature Reserve. Jurnal Ilmiah Perikanan dan Kelautan. 2016;8(1):26-35 [Indonesian].   DOI
25 Sutomo E, van Etten, Wahab L. Proof of Acacia nilotica stand expansion in Bekol Savanna, Baluran National Park, East Java, Indonesia through remote sensing and field observations. Biodiversitas. 2016;17(1):96-101.
26 Thompson K, Band SR, Hodgson JG. Seed size and shape predict persistence in soil. Funct Ecol. 1993;7:236.   DOI
27 Tjitrosoedirdjo SS. Inventory of the invasive alien plant species in Indonesia. Biotropia. 2005;25:60-73.
28 Tjitrosoedirdjo SS, Mawardi I, Tjitrosoedirdjo S. 75 important invasive plant species in Indonesia: SEAMEO BIOTROP Southeast Asian Regional Centre for Tropical Biology; 2016. p. 115. https://biotrop.org/publication/show/75-important-invasive-alien-plant-species-in-indonesia.
29 Trimanto, Hapsari L. Botanical survey in thirteen montane forests of Bawean Island Nature Reserve, East Java Indonesia: Flora diversity, conservation status, and bioprospecting. Biodiversitas. 2016;17(2):832-46.
30 Rejmanek M. What makes species invasive. In: Pysek, Prach K, Rejmanek M, Wade M, editors. Plant invasions-general aspects and special problems. Amsterdam: Academic Publishing; 1995.
31 Rejmanek M. A theory of seed plant invasiveness: the first sketch. Biol Conserv. 1996;78:171-81.   DOI
32 Rejmanek M, Richardson DM. What attributes make some plant species more invasive? Ecology. 1996;77:1655-166.   DOI
33 Rindyastuti R, Sancayaningsih RP. The growth strategies analysis of ten woody plant species for effective revegetation. Biotropia. 2018;25(1):43-55.
34 Rindyastuti R, Abywijaya IK, Rahadiantoro A, Irawanto R, et al. Keanekaragaman Tumbuhan Pulau Sempu dan Ekosistemnya. Jakarta: LIPI Press. [Indonesian]; 2018a.
35 Nagaraj N, Reese JC, Kirkham MB, Kofoid K, Campbell LR, Loughin TM. Relationship between chlorophyll loss and photosynthetic rate in Greenbug (Homoptera) damaged sorghum. J Kansas Entomol Soc. 2002;75(2):101-9.
36 Shipley B. Trade-offs between net assimilation rate and specific leaf area and determining relative growth rate: relationship with daily irradiance. Funct Ecol. 2002;16:682-98.   DOI
37 USDA National Resource Conservation Service: Plant Database. http://plants.usda.gov/java/. Accessed 12 Oct 2012.
38 Van Kleunen M, Weber E, Fischer M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett. 2010;13:235-45.   DOI
39 Riveron-Giro FB, Damon AD, Garcia-Gonzalez A, Solis-Montero L, Aguilar-Romero O, Ramirez-Marcial N, Nieto G. Anatomy of the invasive orchid Oeceoclades maculata: ecological implications. Bot J Linnean Soc. 2017;184:94-112.   DOI
40 Rindyastuti R, Rachmawati D, Sancayaningsih RP, Yulistyarini T. Ecophysiological and growth characters of ten woody plant species in determining their carbon sequestration. Biodiversitas. 2018b;19(2):610-9.   DOI
41 Roger D. Invasive alien species: global perspectives. In: Proceedings of the national workshop on invasive alien species, 20 October 2003, Kuala Lumpur: Organized by the Department of Agriculture, Ministry of Agriculture, Malaysia in collaboration with ASEANET and CAB International - SEA Regional Office; 2003.
42 Sarijeva G, Knapp M, Lichtenthaler HK. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves in Ginkgo and Fagus. J Plant Physiol. 2007;164:950-5.   DOI
43 Namagada M, Krekling T, Lye KA. Leaf anatomical characteristics of Ugandan species of Festuca L. (Poaceae). S Afr J Bot. 2009;75:52-9.   DOI
44 Brym ZT, Lake JK, Allen D, Ostling A. Plant functional traits suggest novel ecological strategy for an invasive shrub in an understory woody plant community. J Appl Ecol. 2011;48:1098-106.   DOI
45 Nurse LA, Sem G, Hay JE, Suarez AG, Wong PP, Briguglio L, Ragoonaden S. Small island states. Climate change 2001: impacts, adaptation, and vulnerability. Cambridge: Cambridge University Press; 2001.
46 Baruch Z, Goldstein G. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia. 1999;121:183-92.   DOI
47 Brantley ST, Young DR. Linking light attenuation, sunflecks, and canopy architecture in mesic shrub thickets. Plant Ecol. 2009;206:225-36.   DOI
48 Burns JH, Winn AA. A comparison of plastic responses to competition by invasive and non-invasive congeners in the Commelinaceae. Biol Invasions. 2006;8:797-807.   DOI
49 Calado H, Fonseca C, Vergilio M, Costa A, Moniz F, Gil A, Dias JA. Small islands conservation and protected areas. J Integr Coast Zone Manag. 2014;14(2):167-74.
50 CBD (Convention on Biological Diversity). Invasive alien species. www.cbd.int/invasive. 2010. Accessed 2 May 2018.
51 Daehler CC. Performance comparison of co-occuring native and alien invasive plants: implications for conservation and restoration. Ann Rev Ecol Evol Syst. 2003;34:183-211.   DOI
52 Dozier H, Gaffney JF, McDonald SK, Johnson ERRL, Shilling DG. Cogongrass in the United States: History, ecology, impacts, and management. Weed Technol. 1998;12:737-43.   DOI
53 Drenovsky RE, Grewell BJ, D'Antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL. A functional trait perspective on plant invasion. Ann Bot. 2012;110:141-53.   DOI
54 Fahn A. Plant anatomy. 3rd ed. Oxford: Pergamon Press; 1982.
55 Grotkopp E, Rejmánek M. High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot. 2007;94(4):526-32.   DOI
56 Grotkopp E, Rejmanek M, Rost TL. Toward a causal explanation of plant invasiveness: seedling growth and life‐history strategies of 29 Pine (Pinus) Species. Am Nat. 2002;159(4):396-419.   DOI
57 Hakim L, Leksono AS, Purwaningtyas D, Nakagoshi N. Invasive plant species and the competitiveness of wildlife tourist destination: a case of Sadengan Feeding Area at Alas Purwo National Park, Indonesia. J Intl Dev Coop. 2005;12(1):35-45.
58 Hameed M, Ashraf M. Anatomical adaptation to salinity in cogon grass (Imperata cylindrica (L). Raeuschel) from the Salt Range, Pakistan. Plant Soil. 2009;322:229-38.   DOI
59 Hamilton MA, Murray BR, Cadotte MW, Hose GC, Baker AC, Harris CJ, Licari D. Life-history correlates of plant invasiveness at regional and continental scales. Ecol Lett. 2005;8:1066-74.   DOI
60 Hammer O, Harper DAT, Ryan PD. Past: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4(1):9.
61 Hapsari L, Abywijaya IK, Nurfadilah S, Rindyastuti R. Diversity and ecology of understory plant in Sempu Island, East Java, Indonesia. Biotropia 2020;27(3):222-37.
62 Hapsari L, Basith A, Novitasiah HR. Inventory of invasive plant species along the corridor of Kawah Ijen Nature Tourism Park, Banyuwangi, East Java. J. Indones Tour Dev Stud. 2014;2(1):1-9.   DOI
63 Hodkinson DJ, Askew AP, Thompson K, Hodgson JG, Bakker JP, Bakker RM. Ecological correlates of seed size in the British flora. Funct Ecol. 2002;12(5):762-6.   DOI
64 Holzmueller EJ, Jose S. Invasion success of cogon grass, an alien C4 perennial grass, in the southeastern United States: exploration of the ecological basis. Biol Invasion. 2010;13(2):435-42.   DOI
65 Bajwa AA, Chauhan BS, Farooq M, Shabbir A, Adkins SW. What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world's worst weeds. Planta. 2016;244:39-57.   DOI
66 Farnsworth EJ, Meyerson LA. Comparative ecophysiology of four wetland plant species along a continuum of invasiveness. Wetlands. 2003;23(4):750-62.   DOI
67 Fenner M. Seed ecology: Chapman and Hall Ltd.; 1985. p. 2-10.
68 Foloruso AE, Awosode OD. Comparative anatomy of invasive and non-invasive species in the family Asteraceae in Nigeria. Int J Biol Chem Sci. 2013;7(5):1804-19.   DOI
69 Gallagher RV, Randall RP, Leishman MR. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv Biol. 2014;29(2):360-9.   DOI
70 Global Invasive Species Database (GISD). Species profile Chromolaena odorata. 2015. Available from: http://www.iucngisd.org/gisd/species.php?sc=47. Accessed 2 Dec 2019.
71 Banovetz SJ, Scheiner SM. The effect of seed mass on the seed ecology of Coreopsis lanceolata. Am Midl Nat. 1994;131(1):65-74.   DOI
72 Graebner RC, Callaway RM, Montesinos D. Invasive species grows faster, competes better, and shows greater evolution toward increased seed size and growth than exotic non-invasive congeners. Plant Ecol. 2012;213:545-53.   DOI
73 Greene DF, Johnson EA. Seed mass and dispersal capacity in wind-dispersed diaspores. Oikos. 1993;67:69-74.   DOI
74 Grime JP. The C-S-R model of primary plant strategies-origins, implications and tests. In: Gottlieb LD, Jain SK, editors. Plant Evolutionary Biology. Dordrecht: Springer; 1988; https://doi.org/10.1007/978-94-009-1207-6_14.   DOI
75 Lambers H, Poorter H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequenses. Adv Ecol Res. 1992;23:187-261.   DOI
76 Kattge J, Diaz S, Lavorel S, Prentice IC, et al. TRY-a global database of plant traits. Glob Change Biol. 2011;17(9):2905-35.   DOI
77 Kudo Y, Mutaqien Z, Simbolon H, Suzuki E. Spread of invasive plants along trails in two national parks in West Java, Indonesia. Tropics. 2014;23(3):99-110.   DOI
78 Lack AJ, Evans DE. Instant notes of plant biology. Oxford: BIOS Scientific Publishers Limited; 2001.
79 Lambers H, Chapin FS, Pons TL. Plant physiological ecology. New York: Spinger-Verlag; 1998. p. 299-322.
80 Leishman MR, Haslehurst T, Ares A, Baruch Z. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol. 2007;176:635-43.   DOI
81 Liao Z-Y, Scheepens JF, W-Tao L, Fang WR, Y-Long Z, Y-Long F. Biomass reallocation and increased plasticity might contribute to successful invasion of Chromolaena odorata, Flora; 2019. https://doi.org/10.1016/j.flora.2019.05.004.   DOI
82 Lowe S, Browne M, Boudjelas S, De Poorter M. 100 of the world's worst invasive alien species. A selection from the global invasive species database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN); 2000. p. 12. First published as special lift-out in Aliens 12, December 2000. Updated and reprinted version: November 2004.
83 James JJ, Drenovsky RE. A basis for relative growth rate differences between native and invasive forb seedlings. Rangel Ecol Manag. 2007;60(4):395-400.   DOI
84 Junaedi DI, Dodo. Exotic plants in Halimun Salak corridor: micro-environment, detection and risk analysis of invasive plants. Biotropia. 2014;21(1):38-52.