• Title/Summary/Keyword: leader-follower formation control

Search Result 25, Processing Time 0.031 seconds

Leader-Follower Based Formation Control of Multiple Mobile Robots Using the Measurements of the Follower Robot (추종 로봇의 측정값들을 이용한 다중 이동 로봇의 선도-추종 접근법 기반 군집 제어)

  • Park, Bong Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.385-389
    • /
    • 2013
  • This paper proposes the leader-follower based formation control method for multiple mobile robots. The controller is designed using the measurements of the follower robot such as the relative distance and angle between the leader and the follower. This means that the follower robot does not require the information of the leader robot while keeping the desired formation. Therefore, the proposed control method can reduce the communication loss and the cost for hardware. From Lyapunov stability theory, it is shown that all error signals in the closed-loop system are uniformly ultimately bounded. Finally, simulation results demonstrate the effectiveness of the proposed control system.

LOS (Line of Sight) Algorithm and Unknown Input Observer Based Leader-Follower Formation Control (LOS 알고리듬과 미지 입력 관측기에 기초한 선도-추종 대형 제어)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Seong-Jea;Hong, Sup;Kim, Sang-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • This paper proposes about decentralized control approach based Leader-Follower formation control using LOS (Line of Sight) algorithm and unknown input observer. The position of robots which is a basic information in multi-robot or single robot motion control is determined by localization algorithm fusing UPS (Ultrasonic Position System) and kinematics model. For formation control, a decentralized control approach individually installing a local controller in leader and follower robot is adopted. Leader robot is controlled to track a specified trajectory by LOS algorithm, and the other robots follow the leader by local controller based on tracking platoon level function, self-sensing data and estimated information from unknown input observer. The performance of proposed method is proven through the formation experiment of two vehicle models.

Obstacle Avoidance of Leader-Follower Formation (리더-추종자 대형제어의 장애물 회피)

  • Oh, Young-Suk;Park, Jong-Hun;Kim, Jin-Hwan;Huh, Uk-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1761-1766
    • /
    • 2011
  • This paper presents obstacle avoidance of Leader-Follower formation. The follower robot maintain the formation with leader robot and avoid the detected obstacle. When obstacle is detected, follower robot avoid it considering leader robot and follower robot position and follower robot and obstacle position. In addition, follower robot avoid obstacle irrespective of obstacle size. Controller of follower robot is designed to satisfy Lyapunov stability by backstepping method. Simulation results shows that the designed controller has a stable performance.

UAV Formation Wight Control Law Utilizing Energy Maneuverability

  • Choi, Jong-Ug;Kim, You-Dan;Moon, Gwan-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.31-41
    • /
    • 2008
  • This paper deals with the energy saving problem of the follower aircraft in the loose leader-follower formation geometry in which the lateral separation between formation members is more than a wingspan of the leader aircraft. This formation geometry offers no drag benefit, but has a strategic advantage. In the case of loose formation flight, the follower aircraft usually consumes more energy than the leader aircraft because the follower aircraft should use more thrust to maintain given formation geometry, especially during the turning phase from the outside of the leader"s flight path or join-up phase. A formation control scheme based on the energy maneuverability is proposed in this paper. To design the proposed control law, the velocity command is designed using feedback linearization for the horizontal formation geometry and then coverts it to the altitude command using the energy equation. Numerical simulation is performed to verify the effectiveness of the proposed controller.

A Modified Nonlinear Guidance Logic for a Leader-Follower Formation Flight of Two UAVs (무인항공기의 Leader-Follower 편대비행을 위한 수정된 비선형 유도법칙)

  • Kim, Do-Myung;Park, Sang-Hyuk;Nam, Su-Hyun;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • A formation flight guidance logic that enables the leader-follower station keeping between two UAVs is presented in this paper. The logic is motivated by the investigation of the relation between the proportional navigation and the nonlinear trajectory tracking guidance law, The simplicity of the presented method provides computational efficiency and allows easy implementation. An excellent performance of the proposed logic is demonstrated via various numerical simulations for multiple UAVs environment.

Leader Robot Controller Considering Follower with Input Constraint (입력 제한을 가진 추종 로봇을 고려한 선도 로봇 제어기)

  • Lee, Seung-Joo;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1032-1040
    • /
    • 2012
  • This paper proposes controller of leader robot considering following robot with input constraints based on leader-following approach. In the previous formation control researches, it was assumed that leader and follower is same object. If leader robot drives as maximum speed that the initial position errors still remain even if following robot have same velocity as a leader. In the situation that velocity of following robot is lower than its leader robot, following robot cannot follow leader robot. Furthermore, the following robot will not be able to made formation with leader robot and keep proximity communication or sensing range. Therefore, multiple mobile robot system using leader-following method should be guaranteed range to get information each other. In this paper, Leader robot is driving to goal position using linear controller and following robot is following trajectory to be made from leader robot. We assume that following robot has input constraints to realize different performance between leader robot and following robot. We design controller of leader robot for desired goal position including the errors between formation and following robot. Thus, we propose leader robot controller considering input constraints of following robot. Finally, we were able to confirm the validity of the proposed method based on simulation results.

Formation Motion Control for Swarm Robot (군집 로봇의 포메이션 이동 제어)

  • La, Byung-Ho;Tak, Myung-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1886-1887
    • /
    • 2011
  • 본 논문은 군집 로봇 포메이션 이동 제어를 위한 방법을 제안한다. Potential field method 알고리즘을 이용하여 Leader-Bot의 장애물 회피와 이동 경로를 계획한다. Leader-bot을 기준으로 하는 Follewer-bot의 포메이션 형성을 위해 Formation generated function을 사용한다. Leader-bot과 Follower-bot들 간에 충돌회피와 Follower-bot들의 장애물 회피를 위해 Potential function을 적용한다. 제안한 방법은 시뮬레이션을 통하여 실제 운용 가능성을 검증한다.

  • PDF

Basic Control Algorithm for Parallel Formation of Multi-mining Robots (다중 집광로봇의 수평대형유지를 위한 기초 알고리즘 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Hong, Sup;Kim, Sang-Bong
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.465-473
    • /
    • 2014
  • This paper proposes a formation control method by which multi-mining robots maintain a specified formation and follow a path. To secure the path tracking performance, a pure-pursuit algorithm is considered for each individual robot, and to minimize the deviation from the reference path, speed reduction in the steering motion is added. For the formation, in which two robots are parallel in a lateral direction, the robots track the specified path at a constant distance. In this way, the Leader-Follower method is adopted and the following robot knows the position and heading angle of the leader robot. Through the experimental test using two ground vehicle models, the performance is verified.

Leader-follower Formation Control of Mobile Robots using Least Square Method (최소 자승법을 사용한 모바일 로봇의 선도로봇-추종로봇 군집 제어)

  • Choi, Kyoung-Mi;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1829-1830
    • /
    • 2008
  • The paper deals with leader-follower formations of nonholonomic mobile robots using least square method in order to maintain the formation constantly. The nonholonomic property of the mobile robot cause us to use the least square method. Then, the performance of the developed formation controller is verified by simulation results.

  • PDF

Formation Control for Underactuated Autonomous Underwater Vehicles Using the Approach Angle

  • Kim, Kyoung Joo;Park, Jin Bae;Choi, Yoon Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.154-163
    • /
    • 2013
  • In this paper, we propose a formation control algorithm for underactuated autonomous underwater vehicles (AUVs) with parametric uncertainties using the approach angle. The approach angle is used to solve the underactuated problem for AUVs, and the leader-follower strategy is used for the formation control. The proposed controller considers the nonzero off-diagonal terms of the mass matrix of the AUV model and the associated parametric uncertainties. Using the state transformation, the mass matrix, which has nonzero off-diagonal terms, is transformed into a diagonal matrix to simplify designing the control. To deal with the parametric uncertainties of the AUV model, a self-recurrent wavelet neural network is used. The proposed formation controller is designed based on the dynamic surface control technique. Some simulation results are presented to demonstrate the performance of the proposed control method.