• Title/Summary/Keyword: lead target

검색결과 507건 처리시간 0.032초

A Thermal hydraulic Investigation on ADSR Liquid Lead Target

  • Kim, Ju Y.;Byung G. Huh;Chang H, Chung;Tae Y. song;Park, Won S.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.666-671
    • /
    • 1998
  • Computational fluid dynamics(CFD) code FLUENT[11 was used to simulate the thermal hydraulic processes occuring in conceptual design of the accelerator-driven subcritical reactor(ADSR) liquid lead target. The purpose of the analysis is to investigate the thermal hydraulic characteristics of liquid lead as ADSR target material with various target geometries and injection locations of proton beam. In the calculation analysis, the local temperature of the liquid lead target rises to the boiling temperature very rapidly When the proton beam is injected from the bottom of the target system, the duration time to reach the boiling temperature is longer and the temperature distribution is flatter than other cases.

  • PDF

Activation analysis of targets and lead in a lead slowing down spectrometer system

  • Lee, Yongdeok;Kim, Jeong Dong;Ahn, Seong Kyu;Park, Chang Je
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.182-189
    • /
    • 2018
  • A neutron generation system was developed to induce fissile fission in a lead slowing down spectrometer (LSDS) system. The source neutron is one of the key factors for LSDS system work. The LSDS was developed to quantify the isotopic contents of fissile materials in spent nuclear fuel and recycled fuel. The source neutron is produced at a multilayered target by the (e,${\gamma}$)(${\gamma}$,n) reaction and slowed down at the lead medium. Activation analysis of the target materials is necessary to estimate the lifetime, durability, and safety of the target system. The CINDER90 code was used for the activation analysis, and it can involve three-dimensional geometry, position dependent neutron flux, and multigroup cross-section libraries. Several sensitivity calculations for a metal target with different geometries, materials, and coolants were done to achieve a high neutron generation rate and a low activation characteristic. Based on the results of the activation analysis, tantalum was chosen as a target material due to its better activation characteristics, and helium gas was suggested as a coolant. In addition, activation in a lead medium was performed. After a distance of 55 cm from the lead surface to the neutron incidence, the neutron intensity dramatically decreased; this result indicates very low activation.

In silico High-Throughput Screening by Hierarchical Chemical DB Search by 3D Pharmacophore Model

  • Shin, Jae-Min
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.181-182
    • /
    • 2002
  • Recentadvancesin '-omics ' technologies enable us to discover more diverse disease- relevant target proteins, which encourages us to find out more target-specific novel lead compounds as new drug candidates. Therefore, high-throughput screening (HTS) becomes an essential tool in this area. Among many HTS tools, in silico HTS is a very fast and cost-effective tool to try to derive a new lead compound for any new targets, especially when the target protein structures are known or readily modeled. (omitted)

  • PDF

시뮬레이션 방식을 이용한 리드 타임 개선 사례 연구 (A Case Study on Lead Time Improvement Using a Simulation Approach)

  • 노원주;심재훈
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.140-152
    • /
    • 2021
  • During the shift from gasoline vehicles to electric ones, auto parts manufacturing companies have realized the importance of improvement in the manufacturing process that does not require any layout changes nor extra investments, while maintaining their current production rate. Due to these reasons, for the auto part manufacturing company, I-company, this study has developed the simulation model of the PUSH system to conduct a process analysis in terms of production rate, WIP level, and logistics work's utilization rate. In addition, this study compares the PUSH system with other three manufacturing systems -KANBAN, DBR, and CONWIP- to compare the performance of these production systems, while satisfying the company's target production rate. With respect to lead-time, the simulation results show that the improvement of 77.90% for the KANBAN system, 40.39% for the CONWIP system, and 69.81% for the DBR system compared to the PUSH system. In addition, with respect to WIP level, the experimental results demonstrate that the improvement of 77.91% for the KANBAN system, 40.41% for the CONWIP system, and 69.82% for the DBR system compared to the PUSH system. Since the KANBAN system has the largest impacts on the reduction of the lead-time and WIP level compared to other production systems, this study recommends the KANBAN system as the proper manufacturing system of the target company. This study also shows that the proper size of moving units is four and the priority allocation of bottleneck process methods improves the target company's WIP and lead-time. Based on the results of this study, the adoption of the KANBAN system will significantly improve the production process of the target company in terms of lead-time and WIP level.

Oligomer Model of PB1 Domain of p62/SQSTM1 Based on Crystal Structure of Homo-Dimer and Calculation of Helical Characteristics

  • Lim, Dahwan;Lee, Hye Seon;Ku, Bonsu;Shin, Ho-Chul;Kim, Seung Jun
    • Molecules and Cells
    • /
    • 제42권10호
    • /
    • pp.729-738
    • /
    • 2019
  • Autophagy is an important process for protein recycling. Oligomerization of p62/SQSTM1 is an essential step in this process and is achieved in two steps. Phox and Bem1p (PB1) domains can oligomerize through both basic and acidic surfaces in each molecule. The ZZ-type zinc finger (ZZ) domain binds to target proteins and promotes higher-oligomerization of p62. This mechanism is an important step in routing target proteins to the autophagosome. Here, we determined the crystal structure of the PB1 homo-dimer and modeled the p62 PB1 oligomers. These oligomer models were represented by a cylindrical helix and were compared with the previously determined electron microscopic map of a PB1 oligomer. To accurately compare, we mathematically calculated the lead length and radius of the helical oligomers. Our PB1 oligomer model fits the electron microscopy map and is both bendable and stretchable as a flexible helical filament.

HYPER 빔창의 열수력 해석에 의한 운전특성에 관한 연구 (A Study on the Operating Characteristics by Heat Flow Analysis of HYPER Beam Window)

  • 송민근;최진호;주은선;송태영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.915-920
    • /
    • 2001
  • A spent fuel problem has prevented the nuclear power from claiming to be a completely clean energy source. The nuclear transmutation technology to incinerate the long lived radioactive nuclides and produce energy during the incineration process is believed to be one or the best solutions. HYPER(Hybrid Power Extraction Reactor) is the accelerator driven transmutation system which is being developed by KAERI(Korea Atomic Energy Research Institute). Some major feature of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Lead-bismuth(Pb-Bi) is adopted as a coolant and Spallation target material. HYPER is a subcritical reactor which needs an external neutron source. 1GeV proton beam is irradiated to Lead-bismuth(Pb-Bi) target inside HYPER, and spallation neutrons are produced. When proton beams are irradiated, much heat is also deposited in the Pb-Bi target and beam window which separates Pb-Bi and accelerator vacuum. Therfore, an effective cooling is needed for HYPER target. In this paper, we performed the thermal-hydraulic analysis of HYPER target using FLUENT code, and also calculated thermal and mechanical stress of the beam window using ANSYS code.

  • PDF

Lipid A as a Drug Target and Therapeutic Molecule

  • Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제23권6호
    • /
    • pp.510-516
    • /
    • 2015
  • In this review, lipid A, from its discovery to recent findings, is presented as a drug target and therapeutic molecule. First, the biosynthetic pathway for lipid A, the Raetz pathway, serves as a good drug target for antibiotic development. Several assay methods used to screen for inhibitors of lipid A synthesis will be presented, and some of the promising lead compounds will be described. Second, utilization of lipid A biosynthetic pathways by various bacterial species can generate modified lipid A molecules with therapeutic value.

2중 코어 구조의 소화기용 친환경 탄자 제조 및 특성 분석 (Fabrication and Performance Analysis of Environment Friendly Double Core Bullets for Small Arms)

  • 홍준희;장탁순;송창빈;강대화
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.345-352
    • /
    • 2011
  • This paper focuses on the properties analysis of 9mm bullet dual structure core to substitute current lead core by environment-friendly combination of W-Cu-Ni system high density composite materials. So the four combination samples were made of dual core with the different center of gravity location backward or forward compare to that of lead type bullet, and we experimented about the performance of 9mm bullet dual structure core. In the experimental results, the outer shape of core of four environment friendly samples on the target maintain marginally, while the current lead core bullets are completely crushed after hitting the target. The penetration depth of environment friendly samples excel seven times to lead type bullet and the three out of four samples with forward adjusted center of gravity penetrate deep as twice as ones backward. The impact tolerance of all four samples satisfies military specification, however, more firing tests are required to improve reliability of scattering distribution.

Analysis of Multi-Level Inventory Distribution System for an Item with Low Level of Demand

  • Lee, Jin-Seok;Yoon, Seung-Chul
    • 산업경영시스템학회지
    • /
    • 제23권60호
    • /
    • pp.11-22
    • /
    • 2000
  • The main objective of this research is to analyze an order point and an order quantity of a distribution center and each branch to attain a target service level in multi-level inventory distribution system. In case of product item, we use the item with low volume of average monthly demand. Under the continuous review method, the distribution center places a particular order quantity to an outside supplier whenever the level of inventory reaches an order point, and receives the order quantity after elapsing a certain lead time. Also, each branch places an order quantity to the distribution center whenever the level of inventory reaches an order point, and receives the quantity after elapsing a particular lead time. When an out of stock condition occurs, we assume that the item is backordered. For considering more realistic situations, we use generic type of probability distribution of lead times. In the variable lead time model, the actually achieved service level is estimated as the expected service level. Therefore, this study focuses on the analysis of deciding the optimal order point and order quantity to achieve a target service level at each depot as a expected service level, while the system-wide inventory level is minimized. In addition, we analyze the order level as a maximum level of inventory to suggest more efficient way to develop the low demand item model.

  • PDF