• 제목/요약/키워드: lead frame

검색결과 336건 처리시간 0.029초

Nonlocal integral elasticity analysis of beam bending by using finite element method

  • Taghizadeh, M.;Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.755-769
    • /
    • 2015
  • In this study, a 2-D finite element formulation in the frame of nonlocal integral elasticity is presented. Subsequently, the bending problem of a nanobeam under different types of loadings and boundary conditions is solved based on classical beam theory and also 3-D elasticity theory using nonlocal finite elements (NL-FEM). The obtained results are compared with the analytical and numerical results of nonlocal differential elasticity. It is concluded that the classical beam theory and the nonlocal differential elasticity can separately lead to significant errors for the problem under consideration as distinct from 3-D elasticity and nonlocal integral elasticity respectively.

Improved earthquake resistant design of torsionally stiff asymmetric steel buildings

  • Kyrkos, M.T.;Anagnostopoulos, S.A.
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.127-147
    • /
    • 2011
  • In a companion paper as well as in earlier publications, it has been shown that in asymmetric frame buildings, designed in accordance with modern codes and subjected to strong earthquake excitations, the ductility demands at the so called "flexible" edges are consistently and substantially higher than the ductility demands at the "stiff" edges of the building. In some cases the differences in the computed ductility factors between elements at the two opposite building edges exceeded 100%. Similar findings have also been reported for code designed reinforced concrete buildings. This is an undesirable behavior as it indicates no good use of material and the possibility for overload of the "flexible" edge members with a consequent potential for premature failure. In the present paper, a design modification will be introduced that can alleviate the problem and lead to a more uniform distribution of ductility demands in the elements of all building edges. The presented results are based on the steel frames detailed in the companion paper. This investigation is another step towards more rational design of non-symmetric steel buildings.

90Sn10Cu, 99Sn1Cu 도금막의 특성 (Characteristics of Electroplated 90Sn10Cu, 99Sn1Cu Films)

  • 김주연;김시중;배규식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.658-662
    • /
    • 2000
  • The microstructure, adhesion strength and conductivity of electroplated Sn-Cu Films on Alloy42 lead Frame were measured for comparison. In the case of electroplated 90Sn10Cu, 99Sn1Cu, Cu$\sub$10/Sn$_3$Phase was formed and Ni$_3$Sn$_2$Phase was formed after 200$^{\circ}C$, 30min annealing. In the case of electroplated 99Sn1Cu, Cu$\sub$10/Sn, Ni$_3$Sn phases were formed and Ni$_3$Sn$_4$, Ni$_3$Sn$_4$phases were formed after 200$^{\circ}C$, 30min annealing. 90Sn10Cu film was measured better uniformity, adhesion strength and conductivity than 99Sn1Cu.

  • PDF

Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method

  • Rafiee, A.;Talatahari, S.;Hadidi, A.
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.431-451
    • /
    • 2013
  • The Big Bang-Big Crunch (BB-BC) optimization algorithm is developed for optimal design of non-linear steel frames with semi-rigid beam-to-column connections. The design algorithm obtains the minimum total cost which comprises total member plus connection costs by selecting suitable sections. Displacement and stress constraints together with the geometry constraints are imposed on the frame in the optimum design procedure. In addition, non-linear analyses considering the P-${\Delta}$ effects of beam-column members are performed during the optimization process. Three design examples with various types of connections are presented and the results show the efficiency of using semi-rigid connection models in comparing to rigid connections. The obtained optimum semi-rigid frames are more economical solutions and lead to more realistic predictions of response and strength of the structure.

Sensorless Control of Permanent Magnet Synchronous Motors with Compensation for Parameter Uncertainty

  • Yang, Jiaqiang;Mao, Yongle;Chen, Yangsheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1166-1176
    • /
    • 2017
  • Estimation errors of the rotor speed and position in sensorless control systems of Permanent Magnet Synchronous Motors (PMSM) will lead to low efficiency and dynamic-performance degradation. In this paper, a parallel-type extended nonlinear observer incorporating the nominal parameters is constructed in the stator-fixed reference frame, with rotor position, speed, and the load torque simultaneously estimated. The stability of the extended nonlinear observer is analyzed using the indirect Lyapunov's method, and observer gains are selected according to the transfer functions of the speed and position estimators. Taking into account the parameter inaccuracies issue, explicit estimation error equations are derived based on the error dynamics of the closed-loop sensorless control system. An equivalent flux error is defined to represent the back Electromotive Force (EMF) error caused by the inaccurate motor parameters, and a compensation strategy is designed to suppress the estimation errors. The effectiveness of the proposed method has been validated through simulation and experimental results.

Adaptive Synchronous Rectification Control Method for High Efficiency Resonant Converter

  • Kim, Joohoon;Moon, Sangcheol;Kim, Jintae
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.40-41
    • /
    • 2017
  • New adaptive SR (synchronous rectification) control method is proposed offering high efficiency in entire load conditions for resonant converters, in this paper. Unlike the conventional SR control method where turn-on time of the MOSFETs is varied depending on load conditions due to the stray inductance induced by a lead frame of MOSFET or PCB patterns, the proposed method automatically maintains a time interval between turn-off instance of a MOSFET and zero current instance of a body diode of the MOSFET as a predetermined time, in each switching cycle. Therefore, optimized turn-on time of the MOSFET can be achieved regardless of the leakage inductance. In this paper, the operational principle of proposed control method has been discussed. It has been tested on LLC resonant converter with 240 W to verify the proposed control method.

  • PDF

트랜스퍼 몰딩 방식을 이용한 고 색 균일성 특성을 가지는 백색 LED 램프 (Development of White LED Lamp Having High Color Uniformity With Transfer Molding Technology)

  • 유순재;김도형
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.38-41
    • /
    • 2010
  • Compared to conventional molding technology, the color uniformity of light direction emitted from LED is improved with PCB type lead frame technology in which metal thin film is used and transfer molding technology which makes the density of phosphor uniform by manufacturing high density LED lamp. The light efficiency and the color uniformity of the LED are improved by molding the phosphor layer outside of chip and controlling the thickness of the phosphor layer. CIE x,y difference of LED in major axis is also improved uniformly from 0 to 90 degrees.

다이의 미세정렬을 통한 전단 버의 최소화에 관한 연구 (A Study on the Burr Minimization in Punching Process Based on Micro Die Alignment)

  • 홍남표;신용승;신홍규;김헌영;김병희
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.70-75
    • /
    • 2004
  • The shearing process for the sheet metal is normally used in the precision elements such as a lead frame of IC chips. In these precision elements, the burr formation brings a bad effect on the system assembly and demands the additional deburring process. In this paper, we developed the small size precision punching system to investigate burr formation mechanism and to present kinematically punch-die aligning methodology between the rectangular shaped punch and die. The punch is driven by an air cylinder and the sheet metal is moving on the X-Y table system which is driven by two stepping motors. The whole system is controlled by microprocessor and is communicated with each other by RS232C serial communication protocol. Punching results are measured manually using the SEM photographs and are compared aligning result with miss aligning one.

The Semantics of the English Progressive and the Imperfective Paradox

  • Yeom, Jae-Il
    • 한국언어정보학회지:언어와정보
    • /
    • 제7권2호
    • /
    • pp.139-161
    • /
    • 2003
  • The progressive in English is taken to be an operator which takes a non-stative predicate and returns a predicate which denotes a process with a temporal frame around some definite time or event. When, it is combined with a predicate which has a culmination in the event, the sentence means that the culmination has not come yet. So the event denoted by the base predicate is not true at the current time. On the other hand, when it is combined with a predicate which has no culmination in the event, the event denoted by the base predicate is taken to be true. In this paper, this is explained by the semantics of the progressive based on the notion of contributiveness. I propose that a progressive sentence is verified by some subevents which are contributive to the current situation and the progress of the event beyond the threshold level of the event denoted by the base predicate. A sub-situation is contributive if the addition of it to the previous situation is more likely to lead to the whole situation than the previous situation.

  • PDF

Numerical study of progressive collapse in reinforced concrete frames with FRP under column removal

  • Esfandiari, J.;Latifi, M.K.
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.165-172
    • /
    • 2019
  • Progressive collapse is one of the factors which if not predicted at the time of structure plan; its occurrence will lead to catastrophic damages. Through having a glance over important structures chronicles in the world, we will notice that the reason of their collapse is a minor damage in structure caused by an accident like a terrorist attack, smashing a vehicle, fire, gas explosion, construction flaws and its expanding. Progressive collapse includes expanding rudimentary rupture from one part to another which leads to total collapse of a structure or a major part it. This study examines the progressive collapse of a 5-story concrete building with three column eliminating scenarios, including the removal of the corner, side and middle columns with the ABAQUS software. Then the beams and the bottom of the concrete slab were reinforced by (reinforcement of carbon fiber reinforced polymer) FRP and then the structure was re-analyzed. The results of the analysis show that the reinforcement of carbon fiber reinforced polymer sheets is one of the effective ways to rehabilitate and reduce the progressive collapse in concrete structures.