• Title/Summary/Keyword: lead acid battery

Search Result 162, Processing Time 0.032 seconds

Preparation of Purified Lead Nitrate from Lead Sulfate Generated from the Lead-acid Battery Smelter as By-products (재생연 제련 부산물인 황산연으로부터 정제 질산연의 제조)

  • Lee, Jin-Young;Han, Choon;Shin, Joong-Kuk;Kim, Saung-Gyu;Lee, Hwa-Young;Oh, Jong-Kee
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.31-38
    • /
    • 1998
  • Hydrometallugical process was developed to produce the purified lead nitrate from lead dust mainly composed of lead s sulfate generated from lead-acid battery smelter as by-product. This process consisLed of carbonation process with carbonate s salts, leaching and purification processes. FmaJJy crude lead nitrate purified to produce high-purity product with over 99% Pb $(NO_3)_2$.

  • PDF

Evaluation of Lead levels in Airborne by a portable X-Ray Fluorescence Instrument (휴대용 X-Ray 형광기기(XRF)를 이용한 공기중 납농도 평가)

  • Ahn, Kyu Dong;Lee, Jong Chun;Cho, Kwang Sung;Kim, Nam Su;Kim, Jin Ho;Lee, Sung Soo;Lee, Byung Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.235-240
    • /
    • 2001
  • This study was performed to compare the lead levels of 20 quality control standard samples(KOSHA:18-2000) and 72 field samples in lead-acid battery manufacturing plant between ICP and portable-XRF methods. 1. While the proficiencies of 20 quality control standard samples by ICP were 100%, those of analytic result values by XRF were 75%. 2. The correlation coefficient(r) between the reference values for quality control (REF) and the analytic result values by ICP (ICP) was 1.0(p<0.05), and simple linear regression equation and the coefficient(R2) were REF = -0.0009 + 1.016 ICP and 0.9997, respectively. 3. The correlation coefficient(r) between the analytic result values of quality control standard samples by ICP (ICP) and by XRF (XRF) was 0.975(p<0.05), and simple linear regression equation and the coefficient(R2) were ICP = -0.0003 + 1.002 XRF and 0.950, respectively. 4. The correlation coefficient(r) between the analytic result values for lead samples of a lead-acid battery manufacturing plant by ICP (ICP) and by XRF (XRF) was 0.993(p<0.05), and simple linear regression equation and the coefficient(R2) were ICP = -2.058 + 0.996 XRF and 0.987, respectively. 5. While the frequency distributions of XRF /ICP(Ratio) for each ICP concentration levels in a lead-acid battery manufacturing plant revealed high proportion in ratio range of 0.876-1.125 than in ration range of 1.126-1.375. Also, ICP concentration level in ration range of 0.786-1.125 was increased with increase of frequency distribution of XRF/ICP. 6. The limit of detection of XRF on lead was determined to be $6.11{\mu}g$/filter The data presented in this study indicated that relationship for lead level of quality control samples and field samples in a lead -acid battery manufacturing plant by ICP and portable-XRF methods was proved. The practicing industrial hygienist can use portable-XRF to produce a rapid on-site determination of lead exposure that can immediately becommunicated to workers and help identify appropriate levels of personal protection.

  • PDF

A Study on the Plate for Deep Discharge in Lead Acid Battery (납축전지의 심방전용 극판에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.197-202
    • /
    • 2014
  • Positive plate was composed of lead hydroxide via reaction between lead oxide and $H_2O$ and lead sulfate was formed of the reaction of lead hydroxide with sulfuric acid. And its density is $3.8g/cm^3$, $4.0g/cm^3$, $4.2g/cm^3$ and $4.4g/cm^3$ by controlling volume of refined water. Curing of positive plate is done for low ($45^{\circ}C$, 40hr, over 95% of relative humidity) & high ($80^{\circ}C$, 40hr, over 95% of relative humidity) temperature, which created 3BS & 4BS active materials. Experimental result of DOD with 100% life cycle test shows that it was not related to the density of active materials but to the low & high temperature aging of active materials. The test makes us to understand that the crystallization which is made by curing of active materials is a more of a main factor than density of active materials under the deep cycle using circumstances. The active materials which were from the high temperature curing are better for deep cycle performance.

A study on the operating method for Photovoltaic system through the SOC measurement of batteies (Battery SOC(State of Charge)측정을 통한 태양광발전 시스템 운영 방안 연구)

  • Song, Jung-Yong;Seo, Yu-Jin;Kwon, Oh-Sang;Jeoung, Kwan-Chul;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.1-7
    • /
    • 2004
  • In this paper, the new improved method for photovoltaic system was studied available for a lighting load by measuring the state of charge of lead-acid batteries. Photovoltaic systems has been evaluated as one of the most new and renewable energy and especially, the Stand-Alone Photovoltaic system has been used to a street light, a road sign light, an air caution light, an emergency call. Many Stand-Alone PV system are installed by a group. Although the pre-installation cost of PV system is high and it has not been operated due to the absence of optimal management standards. In this paper, it is proposed a new operating method by the measurement of lead-acid battery's SOC with a Ah balancing.

SOC Estimation of Flooded Lead Acid Battery Using an Adaptive Unscented Kalman Filter (적응형 Unscented 칼만필터를 이용한 플러디드 납축전지의 SOC 추정)

  • Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.59-60
    • /
    • 2016
  • Flooded lead acid batteries are still very popular in the industry because of their low cost as compared to their counterparts. State of Charge (SOC) estimation is of great importance for a flooded lead acid battery to ensure its safe working and to prevent it from over-charging or over-discharging. Different types of Kalman Filters are widely used for SOC estimation of batteries. The values of process and measurement noise covariance of a filter are usually calculated by trial and error method and taken as constant throughout the estimation process. While in practical cases, these values can vary as well depending upon the dynamics of the system. Therefore an Adaptive Unscented Kalman Filter (AUKF) is introduced in which the values of the process and measurement noise covariance are updated in each iteration based on the residual system error. A comparison of traditional and Adaptive Unscented Kalman Filter is presented in the paper. The results show that SOC estimation error by the proposed method is further reduced by 3 % as compared to traditional Unscented Kalman Filter.

  • PDF

Effects of Casting Method and Rolling on the Corrosion Behaviors of Pb Alloys for a Lead Acid Battery (주조 방식 및 압연에 따른 연축전지용 납 합금 기판의 부식 특성)

  • Oh, KkochNim;Lee, Kyu Hyuk;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • In this study, we examined corrosion behaviors of two types of Pb alloys for a lead acid battery comparatively. One containing 6.6 wt% Sn, 36 mg/kg Bi, and 612.4 mg/kg Ca was prepared by twin-roll continuous casting. The other containing 5.2 wt% Sn, 30.5 mg/kg Ag, and 557 mg/kg Ca was made by twin-belt continuous casting. Potentiodynamic polarization tests were performed to evaluate corrosion resistance. Cyclic voltammetry was done to examine oxidation and reduction reactions occurring on the surface of each alloy in 4.8 M H2SO4 solution. Electrochemical test results implied that the Pb alloy prepared with the twin-belt casting method was less stable than that cast with the twin-roll method. Such results might be due to precipitations formed during the casting process. Rolling did not appear to affect the corrosion behavior of the twin-roll samples with Ag < 10 mg/kg, while it reduced the anodic reaction of Ag on the surface of the twin-belt sample with 30.5 mg/kg Ag.

Charge Estimation of Lead-acid batteries for Electric Vehicles (전기 자동차용 Lead-acid 축전지 잔류용량 측정)

  • Jeong, Byoung-Chang;Kwon, Soon-Shin;Lee, Seong-Ryong;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2724-2726
    • /
    • 1999
  • Various methods for estimation of residual charge of the lead-acid battery have been proposed. But no method can estimate accurately the residual capacity. A new method is proposed in this paper. And experiments were performed for verification of the proposed estimation method.

  • PDF

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

The Efficient Maintenance System of Lead-acid Battery Based on the Analysis of Charging/Discharging Current (충.방전 전류해석을 통한 납축전지의 효율적인 관리시스템)

  • 박영산;황종구
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.158-169
    • /
    • 2004
  • The efficient maintenance system of lead-acid battery was builted based cm analysis of charging and discharging current. This system was designed for the purpose of protecting the overdischarge of battery. So, We could protect the shortening lifetime of battery. It is checked the charging and discharging current of battery to decide the cut-off point by $\mu$-processor 80c196. Two current sensors were used to sense the current and the $\mu$-processer calculated amount of charging and discharging current of battery. And then display the state of charge.

Influence of Safety Valve Pressure on Gelled Electrolyte Valve-Regulated Lead/Acid Batteries Under Deep Cycling Applications

  • Oh, Sang-Hyub;Kim, Myung-Soo;Lee, Jin-Bok;Lee, Heung-Lark;, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • Cycle life tests have been carried out to evaluate the influence of safety valve pressure on valve regulated lead/acid batteries under deep cycling applications. Batteries were cycled at 5 hour rates at 100% DOD, and safety valve pressure was set to 1.08 and 2.00 bar, respectively. The batteries lost 248.3 g and 235.3 g of water for each case after about 1,200 cycles, but the cyclic performances of the batteries were comparable. Most of the gas of the battery during discharging was hydrogen, and the oxygen concentration increased to 18% after 3 hours of charging. The micro structure of the positive active materials was completely changed and the corrosion layer of the positive grid was less than $50{\mu}m$, regardless of the pressure of the safety valve after cycle life tests. The cause of discharge capacity decrease was found to be water loss and the shedding of the positive active materials. The pressure of safety valve does not give little effect to the cyclic performances and the failure modes of the gelled electrolyte valve-regulated lead acid batteries.