• Title/Summary/Keyword: leaching experiment

Search Result 195, Processing Time 0.029 seconds

Mineral Leaching from Forage Placed on Soil Surface of Meadow -Especially for Potassium- (산지초지의 표면에 놓인 목초로 부터의 칼리 및 그 외의 무기양분용출)

  • Kim, Sangdeog A.;Shigekata Yoshida;Ryosei Kayama
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 1989
  • 草地生態系에 있어서의 칼리 (K)의 動態에 관한 硏究의 한 부분으로서, 草地土壞의 表面에 놓인 牧 草落葉의 分解에 따른 칼리의 溶出狀況을 그외의 無機養分의 溶出과 比較하여, 칼리溶出의 特性을 알아 낼 目的으로 실험을 수행했다. 초지토양의 표면에 놓인 牧草葉은 1年의 시험기간중에 當初乾物量의 약30%로 分解되었으며, 그分解速度는 月隣水量보다는 平均氣溫과 더 높은 相關關係를 보였다. 낙엽분해에 따르는 植物體로 부터의 養分溶出은 칼리>인(P)>마그네슘(Mg), 질소(N)>칼슘(Ca)의 順l이었다. 칼리와 인은 1個月 경과후에 當初含有量의 40%와 45%로 현저하게 減少되었으며, 칼리는 그 以後에도 牧草의 分解에 따라 계속해서 溶出되어 9個月 째에는 1%로 減少되었다. 마그네슘과 질소는 목초의 분해와 거의 一致해서 溶出되었으나, 칼슘은 낙엽의 분해가 진행되어도 當初含有量에서 큰 減少가 일어나지 않았다. 以上의 結果로 부터 질소를 포함한 無機物의 溶出은 牧草의 分解와 대체로 같은 傾向을 나타내는 것을 알았으며, 칼리의 溶出은 특히 牧草落葉의 分解初期에 많다는 것을 알았다. 따라서 牧草落葉으로부터의 칼리의 溶出이 草地生態系에 있어서의 칼리의 再循環에 큰 役割을 하는 것으로 생각되어 졌다.

  • PDF

Manufacturing of Ultra-light Ceramsite from Slate Wastes in Shangri-la, China

  • Li, Zhen;Zhang, Haodong;Zhao, Pengshan;He, Xiaoyun;Duan, Xiaowei
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.36-43
    • /
    • 2018
  • The physical and chemical analyses of mineral waste such as moisture content, water absorption, freezing-thawing resisting sexual, chemical composition and crystal structure were investigated. In the technological process of crushing, screening, molding, drying, preheating, sintering and cooling, many parameters were changed to eliminate the influence of freeze thaw stability and the ball billets were processed into slate ceramsites eventually. Adopting orthogonal experiment and range analysis, the optimal technology parameters were confirmed as preheating temperature of $300^{\circ}C$ for 25 minutes and sintering temperature of $1230^{\circ}C$ for 20 minutes. Slate wastes in Shangri-la could foam and expand without any additive. The ultra-light ceramsite could be directly used as building aggregate, since the analysis results of its leaching toxicity were eligible. Besides, effects of sintering temperature on physical property and crystal phase were also explored in this study.

Salt Removal in a Reclaimed Tidal Land Soil with Gypsum, Compost, and Phosphate Amendment

  • Lee, Jeong-Eun;Seo, Dong-Hyuk;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.326-331
    • /
    • 2015
  • High salinity and sodicity of soils play a negative role in producing crops in reclaimed tidal lands. To evaluate the effects of soil ameliorants on salt removal in a highly saline and sodic soil of reclaimed tidal land, we conducted a column experiment with treating gypsum, compost, and phosphate at 0-2 cm depth and measured the salt concentration of leachate and soil. Electrical conductivity of leachate was $45-48dSm^{-1}$ at 1 pore volume (PV) of water and decreased to less than $3dSm^{-1}$ at 3 PV of water. Gypsum significantly decreased SAR (sodium adsorption ratio) of leachate below 3 at 3 PV of water and soil ESP (exchangeable sodium percentage) below 3% for the whole profile of soil column. Compost significantly decreased ESP of soil at 0-5 cm depth to 5% compared with the control (20%). However, compost affected little the composition of cations below a depth of 5 cm and in leachate compared with control treatment. It was concluded that gypsum was effective in ameliorating reclaimed tidal lands at and below a soil layer receiving gypsum while compost worked only at a soil layer where compost was treated.

Assessment of Nitrogen Fate in the Soil by Different Application Methods of Digestate (혐기성 소화액의 농지환원에 따른 질소 거동)

  • Nkombo, Laure Lysette Chimi;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.35-45
    • /
    • 2021
  • Digestate or slurry produced from anaerobic digestion is mostly applied to crop lands for its disposal and recovering nutrients. However, minimizing nitrogen losses following field application of the digestate is important for maximizing the plant's nitrogen uptake and reducing environmental concerns. This study was conducted to assess the effects of three different biogas digestate application techniques (sawdust mixed with digestate (SSD), the hole application method (HA), and digestate injected in the soil (SD)) on nitrate leaching potential in the soil. A pot laboratory experiment was conducted at room temperature of 25 ± 2 ℃ for 107 days. The experimental results showed that sawdust application method turned out to be appropriate for quick immobilization of surplus N in the form of microbial biomass N, reflecting its lower total nitrogen and NH4-N contents and low pH. The NH4-N and total nitrogen fate in the soil fertilized with manure showed no statistically significant (p > 0.05) differences between the different methods applied during the incubation time under room temperature. In contrast, NO3-N concentration indicates significant reduction in sawdust treatment (p < 0.05) compared to the control and other application methods. However, the soil sawdust mixed with digestate was more effective than the other methods, because of the cumulative labile carbon contents of the amendment, which implies soil net N immobilization.

Synthesis of the Nickel-Cobalt-Manganese Cathode Material Using Recycled Nickel as Precursors from Secondary Batteries

  • Hang-Chul Jung;Deokhyun Han;Dae-Weon Kim;Byungmin Ahn
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.987-990
    • /
    • 2021
  • As the amount of high-capacity secondary battery waste gradually increased, waste secondary batteries for industry (high-speed train & HEV) were recycled and materialization studies were carried out. The precipitation experiment was carried out with various conditions in the synthesis of LiNi0.6Co0.2Mn0.2O2 material using a Taylor reactor. The raw material used in this study was a leaching solution generated from waste nickel-based batteries. The nickel-cobalt-manganese (NCM) precursor was prepared by the Taylor reaction process. Material analysis indicated that spherical powder was formed, and the particle size of the precursor was decreased as the reaction speed was increased during the preparation of the NCM. The spherical NCM powder having a particle size of 10 ㎛ was synthesized using reaction conditions, stirring speed of 1000 rpm for 24 hours. The NCM precursor prepared by the Taylor reaction was synthesized as a cathode material for the LIB, and then a coin-cell was manufactured to perform the capacity evaluation.

Effect of Desalinization on Early Seedling Growth of Winter Barley in New Tideland (신간탁지 토양의 제염이 보리의 초기생육에 미치는 영향)

  • 이강수;최선영;최원열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.112-118
    • /
    • 1997
  • This study was conducted to obtain basic information on the desalinization in newly reclaimed tideland. A desalinization experiment with leaching method was carried out using the soil samples collected in Haenam tideland, and the early growth response of winter barley to salt stress during the desalinization was investigated by measuring emergence rate, plant height, leaf area and fresh weight. The soil in Haenam tideland was saline-sodic with 59mS / cm of electrical conductivity and pH 8.0, and the soil texture was silty loam with 16% clay and 75% silt. Depth of water for desalinization(DWD) to decrease the electrical conductivity below 4mS /cm was 140mm in 5cm depth soil and 240mm in 20cm depth soil. The value of pH of soil and leaching water increased from 8.0 to 8.3 until the electrical conductivity decreased to about 6mS / cm during the desalinization. .The emergence rate of winter barley was over 75% in the DWD above 80mm and showed no significant difference with the DWD. The DWD for the normal growth of winter barley seedling was above 120mm at 1 and 2 weeks after sowing(WAS), and above 160mm at 3 and 4 WAS. The leaf area and fresh weight showed no response for salt stress with the DWD above 12mm at 2 WAS, and above 16mm at 3 WAS. It was estimated that the electrical conductivity of soil saturation extract for the normal growth of winter barley during early seedling growth stage in new reclaimed tideland would be below 9mS / cm in 20cm depth soil.

  • PDF

A Study for Medical Mineral Reaction Controls on Artificial Body Fluid Composition: Gastric Juice-Cinnabar Reaction and Concentration of Mercury Complex (가상체액에 대한 광물약의 반응특성 모델링 ; 위액-주사 반응과 수은착물의 농도)

  • 박맹언;김선옥
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.43-53
    • /
    • 1999
  • The medical mineral menas a single mineral or a complex of minerals. It is natural material. using the medical action of he major or the minor elements, and traditional medicine stuff which has been used since long time ago. Jusa, cinnabar as the mineral name, is the product of the hydrothermal process. It is used to relax the body and cure high blood pressure, apoplexy and cardiopathy. Jusais the major component of "An shin hwan" and "Woo hwang chung shim hwan" nowadays because it has such an excellent calm effect. In addition, it is used to cure cancers such as esophageal cancer and gastric cancer. Jusa composed of mercuric sulfide causes mercury poisoning such as Minamata disease. It is dealt with mineralogical property and chemical composition medical stuff in Korea and China, as well asmercury poisoning and medical action of Jusa in this study. In order to predct accumulation of the interior of the body of the major and minor elements in Jusa, leaching experiment of Jusa by artificial gastric juice was done as well as thermodynamic reaction modelling to know concentration of each species of body fluid. The minor elements of 24 species such as As, Pb, Cd, a and Fe by leaching reaction of Jusa and artificial gastric juice were leached. We can know the fact that as is less than 1 ppm, Hg is less than 25 ppm and Cd and m are not detected. In addition, mercury exists as species of Hg2+, HgCl+, HgCl2, HgCl3-, HgCl42-, HgClOH, HgS(H2S)2, Hg(HS)3-, HgS22-, HgOH and Hg(OH)2 by reaction modelling between Jusa and artificial gastric juice. The concentration of sulfide complexes is 24.2 ppm and that of others is less than 10 ppm. According to increasing pH, the concentration of HgS(H2S)2, Hg(HS)3+, HgS22- and Hg(OH)2 increases, whereas the concentration of HgCl+, HgCl2, HgCl3- and HgCl42- decreases. Therefore, Jusa is very useful for the development of new medicine because it is possible to predict formation of the body species and species accumulation on mercury known as a toxic element and concentration changes of toxicity and efficiency.city and efficiency.

  • PDF

Comparative nitrogen use efficiency of urea and pig slurry for regrowth yield and nutritive value in perennial ryegrass sward

  • Park, Sang Hyun;Lee, Bok Rye;Cho, Won Mo;Kim, Tae Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.514-522
    • /
    • 2017
  • Objective: The study aimed to assess the N use efficiency (NUE) of pig slurry (in comparison with chemical fertilizer) for each regrowth yield and annual herbage production and their nutritive value. Methods: Consecutive field experiments were separately performed using a single application with a full dose of N (200 kg N/ha) in 2014 and by four split applications in 2015 in different sites. The experiment consisted of three treatments: i) control plots that received no additional N, ii) chemical fertilizer-N as urea, and iii) pig-slurry-N with five replicates. Results: The effect of N fertilization on herbage yield, N recovery in herbage, residual inorganic N in soil, and crude protein were significantly positive. When comparing the NUE between the two N sources (urea and pig slurry), pig slurry was significantly less effective for the earlier two regrowth periods, as shown by lower regrowth dry matter (DM) yield, N amount recovered in herbage, and inorganic N availability in soil at the 1st and 2nd cut compared to those of urea-applied plots. However, the effect of split application of the two N sources was significantly positive at the last two regrowth periods (at the 3rd and 4th cut). The two N sources and/or split application had little or no influence on neutral detergent fiber (NDF) content, acid detergent fiber (ADF) content, and in vitro DM digestibility, whereas cutting date was a large source of variation for these variables, resulting in a significant increase in in vitro DM digestibility for the last two regrowth periods when an increase in NDF and ADF content occurred. Split application of N reduced the N loss via nitrate leaching by 36% on average for the two N sources compared to a single application. Conclusion: The pig slurry-N was utilized as efficiently as urea-N for annual herbage yield, with a significant increase in NUE especially for the latter regrowth periods.

Behavior of NO3-N Derived from Pig Manure in Soil (돈분(豚糞)에서 유래(由來)한 질산태질소(窒酸態窒素)의 토양(土壤)중 행동(行動))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.353-359
    • /
    • 1996
  • Micro plot study was conducted to elucidate the behavior of nitrogen derived from animal manure in soil and to obtain the fundamental information on animal waste management. Soils used in this experiment were sandy loam and loam. Soil water samplers (1m length ceramic cup tube) were installed at 90cm depth of soil to collect the percolate. Fresh and fermented pig manure were applied at the rate of 0, 50, 100 ton per ha. Maize was grown to evaluate the effect of crop on nitrogen behavior through soil profile. Concentration of nitrate nitrogen in percolate increased by application of pig manure. This trend was more obvious at the loam with fermented pig manure than sandy loam with fresh pig manure treatment. The concentration of nitrate nitrogen was lower under the maize cultivation than bare soil condition by 64.6-68.9%. Concentration of Ca, Mg and Na of soil and percolate increased as nitrate nitrogen concentration increased. The equivalent ratio of cation to nitrate nitrogen of percolate was increased by application of pig manure. This result showed that canon leaching was accompanied by nitrate nitrogen. Concentration of nitrate nitrogen of subsurface soil was increased by pig manure application.

  • PDF

Urea Transformation and Nitrogen Loss in Waterlogged Soil Column

  • Seol, Su-Il;Lee, Sang-Mo;Han, Gwang-Hyun;Choi, Woo-Jung;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.86-93
    • /
    • 2000
  • An experiment was conducted to obtain the quantitative data on the transformation and loss of applied urea-N in waterlogged soil columns. The soil columns were pre-incubated for 35 days to develop oxidized and reduced soil conditions prior to urea application. After urea application at the rate of $150kg\;N\;ha^{-1}$(29.5 mg N), the amounts of nitrogen which were volatilized, leached, and remained in soil column were measured during 38 days of incubation period. On 2 and 4 days of incubation, 54.1%(15.9 mg N) and 98.4%(29.0mg N) of the applied urea was hydrolyzed, respectively. Most of the applied urea was completely hydrolyzed within 6 days. After urea application, the rates of ammonia volatilization were increased with the floodwater pH when the floodwater pH were higher than 7.0. The maximum rate of ammonia volatilization was $0.3mg\;d^{-1}$ when pH of the floodwater showed maximum value of 7.6. The total amount of volatilized nitrogen was 6.1% (1.8mg N) of the applied urea-N. A 63.2 % (18.6mg N) of the applied urea was remained in soil as $NH_4{^+}-N$ and 28.0% (8.2mg N) of the applied urea was leached as $NH_4{^+}-N$ at the end of the incubation. Amount of $NO_3{^-}-N$ in soil was smaller than 2.0 mg throughout the incubation period. The total amount of $NO_3{^-}-N$ leached was very small, which value was 1.8 mg. It suggested that nitrification process was not significant in waterlogged soil column of this study due to high infiltration rate of urea solution applied to the soil column. Therefore only small amount of $NO_3{^-}-N$ was lost by denitrification and leaching process.

  • PDF