• Title/Summary/Keyword: leaching concentration

Search Result 438, Processing Time 0.022 seconds

Enhanced extraction of copper and nickel based on the Egyptian Abu Swayeil copper ore

  • Somia T. Mohamed;Abeer A. Emam;Wael M. Fathy;Amany R. Salem;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.63-78
    • /
    • 2024
  • The continuous increasing of the global demand of copper and nickel metals raises the interest in developing alternative technologies to produce them from copper sulfide ore. Also, in line with Egypt's vision 2030 for achieving the sustainable socioeconomic development which aims at developing alternative and eco-friendly technologies for processing the Egyptian ores to produce these strategic products instead of its importing. These metals enhance the advanced electrical and electronic industries. The current work aims at investigating the recovery of copper and nickel from Abu Swayeil copper ore using pug leaching technique by sulfuric acid. The factors affecting the pug leaching process including the sulfuric acid concentration, leaching time and temperature have been investigated. The copper ore sample was characterized chemically using X-ray fluorescence (XRF) and scanning electron microscope (SEM-EDX). A response surface methodology develops a quadratic model that expects the nickel and copper leaching effectiveness as a function of three controlling factors involved in the procedure of leaching was also investigated. The obtained results showed that the maximum dissolution efficiency of Ni and Cu are 99.06 % and 95.30%, respectively which was obtained at the following conditions: 15 % H2SO4 acid concentration for 6 hr. at 250 ℃. The dissolution kinetics of nickel and copper that were examined according to heterogeneous model, indicated that the dissolution rates were controlled by surface chemical process during the pug leaching. The activation energy of copper and nickel dissolution were 26.79 kJ.mol-1 and 38.078 kJ.mol-1 respectively; and the surface chemical was proposed as the leaching rate-controlling step.

A study on the Separation/recovery of Rare Earth Elements from Wast Permanent Magnet by a Fractional Crystallization Method and Sulfuric Acid Leaching (폐영구자석 황산침출과 분별결정법에 의한 희토류 분리·회수에 대한 연구)

  • Kim, Dae-Weon;Kim, Hee-Seon;Kim, Boram;Jin, Yun-Ho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2022
  • Nd-Fe-B waste permanent magnet contains about 20~30% rare earth elements and about 60~70% iron elements, and the rare earth and iron components were recovered through sulfuric acid leaching and fractional crystallization. Oxidation roasting was not performed for separation and recover of the rare earth and iron elements. The leaching characteristics were confirmed by using as variables the sulfuric acid concentration and the mineral solution concentration ratio. Sulfuric acid leaching was carried out for 3 hours for each sulfuric acid concentration. The leached solid phase was characterized for its crystalline phase, composition, and quantitative components by XRD and XRF analysis, and the filtrate was analyzed for components by ICP analysis. With sulfuric acid leaching at 3M sulfuric acid concentration, neodymium compounds were formed, the iron content was the least, and the recovery rate was high. After the filtrate remaining after sulfuric acid leaching was subjected to fractional crystallization through evaporation and concentration, the neodymium component was found to be concentrated 7.0 times and the iron component 2.8 times. In this study, the recovery rate of waste permanent magnets through sulfuric acid leaching and a fractional crystallization method without an oxidation and roasting process was confirmed to be about 99.4%.

Leaching Characteristic Analysis of Cement Solidified Radioactive Waste Attached by Yellow Sand Rain (황사빗물의 영향에 의한 방사성 폐기물 시멘트 고화체의 침출특성 분석)

  • 김혜진;이수홍;황주호;이재민
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.244-250
    • /
    • 2003
  • With a recent public concern rising on the radioactive waste, it is disclosed that the problem is more serious than expected. This research has been conducted to find effects of yellow sandy rainwaters on the solidified cement of mid-and-low level radioactive waste. The ANS 16.1 standard test method was chosen for this leaching experiment. Make a cement solidified radioactive waste that contains Co nuclide, and fabricate it for over 28 days. Then, decide on the volume of leaching water and the concentration of ion and metal in leachate from the mass concentration of yellow sands in atmosphere. In this paper, we have taken a short look at characteristics of yellow sand. Before going into the leaching experiment, we decided experimental conditions first. Then, it was evaluated and analyzed how sandy rainfalls have impact on the cement solidified radioactive waste based on data from 90 days of leaching experiment.

  • PDF

Evaluation of Diffusibility of Boron in Wood under Water Leaching Conditions

  • Ra, Jong-Bum;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.98-103
    • /
    • 2006
  • Radial and tangential diffusion coefficients of boron in wood under water leaching conditions were determined from the change of concentration profiles of boron. Egner's solution was used to obtain variable diffusion coefficients of boron because it has been known to be the only method to determine variable diffusion coefficients with no cumbersome assumption. The values of diffusion coefficients were between $0.18{\times}10^{-6}m^2/sec$ and $25.6{\times}10^{-6}cm^2/sec$. They increased with the increase of sample thicknesses, and decreased with the increase of leaching times. There was a region where Egner's method was not valid. However, Egner's solution illustrates a convenient way to evaluate diffusion characteristics of boron from wood under water leaching conditions. The diffusion coefficients at wood surface may be regarded as leaching coefficients.

Elution Safety of Recycled Plastic/EAF Dust Composites by Using Leaching Test (폐플라스틱/제강 Dust 성형제의 용출안전성에 대한 연구)

  • Kang, Young-Goo;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.85-91
    • /
    • 2003
  • In this study, We have investigated leaching characteristics of heavy metals for recycled plastic composites containing EAF(Electric Arc Furnace) dust & EAF slag. EAF dust & EAF slag used that is generated in the 3 steel-making compaines in domestic. The physical and chemical properties of EAF dust & slag was examined by measuring specific surface area. porosity, oil absorption test and chemical wetting analysis etc. Results of total analysis indicated that EAF dust, slag contained significant amount of hazardous metals such as Cu, Pb, Cd and Cr. But, In the leaching test of the recycled plastic composites containing EAF dust, slag by Korean Standard Leaching Procedure, composites shows much lower leaching concentration of heavy metals. It was concluded that the recycled plastic composites containing EAF dust, slag showed good physical and chemical characteristics. This means that the EAF dust, slag can be effectively used as a functional filler.

Sulfuric Acid Leaching of Zinc and Manganese from Spent Zinc-Carbon Battery (황산에 의한 폐망간전지로부터 아연과 망간의 침출)

  • Sohn Hyun-Tae;Ahn Jong-Gwan;Sohn Jeong-Soo;Park Kyoung-Ho;Park In-Yong
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.44-50
    • /
    • 2002
  • Characteristics on the sulfuric acid leaching of zinc and manganese from the spent zinc-carbon battery powders obtained by cushing and magnetic separation, were investigated with the variation of sulfuric acid concentration, reaction temperature, stir-ring speed and solid/liquid ratio. The sample powders were composed of Zn metal, ZnO, $MnO_2$ and $Mn_2$$O_3$. and it was found that the selective leaching of zinc was difficult in this system. At the condition of S/L ratio 1:10, IM H$_2$$SO_4$, $60^{\circ}C$ and 200 rpm, leaching rate of Zn and Mn are 92% and 35% respectively. The concentration of Zn and Mn in the leaching solution are 19.5 g/l, 7.8 g/l and pH of that solution is 0.75. It was confirmed at reducing agent should be added to increase e leaching rate of manganese with sulfuric acid.

Simultaneous Extraction of Yttrium and Neodymium from Fly Ash by Two-Step Leaching Process with Aid of Ultrasonic Wave (2단계 침출 과정에서 발생되는 비산회로부터 초음파 활용하여 이트륨과 네오디뮴의 동시 추출)

  • Kim, Jae-Kwan;Park, Seok-Un
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.153-159
    • /
    • 2021
  • A two-step process for increasing the leaching efficiency of yttrium and neodymium from coal fly ash were investigated at solid loadings of 5.0 g ash ~1,000 g ash/l of 1.0 N~10.0 N H2SO4, temperature ranging from 30℃ to 90℃, ultrasonic leaching time of 1~10 hours, and ultrasonic power of 25~200 W. The yttrium and neodymium from coal fly ash were effectively leached into ion phases by step change of the first conventional dissolution at room temperature and then the second heating process with the aid of ultrasonic wave, and maximum leaching efficiency of yttrium and neodymium obtained were 66 % and 63 %, respectively. The activation energies for the leaching reaction of yttrium and neodymium at second heating process dependent on leaching time and temperature were derived to be 41.540 kJmol-1 and 507.92 kJmol-1, respectively. The optimum conditions for the maximum leaching of yttrium and neodymium were found to be the solid loading of 250 g ash/l of H2SO4, solvent concentration of 2.0 N H2SO4, and second step process of temperatures of 30℃ for 3 hours and then 90℃ for 4 hours with ultrasonic intensity of 100 W.

Reusing the Liquid Fraction Generated from Leaching and Wet Torrefaction of Empty Fruit Bunch

  • Lee, Jae-Won;Choi, Jun-Ho;Im, Hyeon-Soo;Um, Min;Lee, Hyoung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.372-377
    • /
    • 2019
  • Leaching ($60^{\circ}C$, 5 min) and wet torrefaction ($200^{\circ}C$, 5 min) of empty fruit bunch (EFB) were carried out to improve the fuel properties; each liquid fraction was reused for leaching and wet torrefaction, respectively. In the leaching process, potassium was effectively removed because the leaching solution contained 707.5 ppm potassium. Inorganic compounds were accumulated in the leaching solution by increasing the reuse cycle of leaching solution. The major component of the leached biomass did not differ significantly from the raw material (p-value < 0.05). Inorganic compounds in the biomass were more effectively removed by sequential leaching and wet torrefaction (61.1%) than by only the leaching process (50.1%) at the beginning of the liquid fraction reuse. In the sequential leaching and wet torrefaction, the main hydrolysate component was xylose (2.36~4.17 g/L). This implied that hemicellulose was degraded during wet torrefaction. As in the leaching process, potassium was effectively removed and the concentration was accumulated by increasing the reuse cycle of wet torrefaction hydrolysates. There was no significant change in the chemical composition of wet torrefied biomass, which implied that fuel properties of biomass were constantly maintained by the reuse (four times) of the liquid fraction generated from leaching and wet torrefaction.

Bioleaching Behavior of Cu and Co by Aspergillus Niger Strains from Molasses Culture (당밀배지에서 Aspergillus niger 균주에 의한 구리 및 코발트의 미생물 침출 거동)

  • Ahn, Hyo-Jin;Ahn, Jae-Woo;Ryu, Seong-Hyung
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • For the recovery of Co and Cu, bioleaching behavior of Co, Cu, Fe, Mg, Al by Aspergillus niger culture from the molasses growth medium was investigated. Series of leaching tests have been conducted by varying Aspergillus niger's type, molasses concentration in the growth medium, pulp density and reaction time. The results showed that increase of the molasses concentration in the growth medium from 1% to 4% increased the leaching percentage of Co and Cu and the optimal molesses concentration was found to be 4% in the growth medium. Maxinum 90% of Co and 70% of Cu were dissolved from the leaching test at the 10 g/L pulp density, 4 % of molasses concentration in the growth medium after 21 days by Aspergillus niger KCTC 6985. But in case of using Aspergillus niger KCTC 6144, the maxium leaching percentage of Co and Cu was reached 90% respectively at a pulp density 5 g/L and 4% of molasses concentration.

A Study on Leaching and Adsorption in Korean Pine (Pinus koraiensis) to Precipitation (강우에 의한 잣나무의 용탈량 및 흡착량에 관한 연구)

  • 주영특;진현오;이상덕
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • This study on leaching and adsorption in Korean pine (Pinus koraiensix) to precipitation was carried out to investigate the stemflow of Korean pine and artificial crown for the concentration of leaching and adsorption of Korean pine. For comparative, we made artificial crown with plastics. The size of artificial crown was made similar with projected area of Korean pine at Kyung Hee University experimental forest, Gwangiu-gun, Kyunggi-do. In case of the concentration of leaching, the cation of $K^{+}$ was increased in November, and during the period of research, the cation of $K^{+}$ was more leached than any other dissolved element. In case of the concentration of adsorption, the cation of $Ca^{2+}$ was increased in June, July and November, and the cation of $Mg^{2+}$ and $Al^{3+}$ were increased in November.ember.

  • PDF