• 제목/요약/키워드: layout optimization

검색결과 274건 처리시간 0.021초

A Study of UWB Placement Optimization Based on Genetic Algorithm

  • Jung, Doyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.99-107
    • /
    • 2022
  • Urban Air Mobility (UAM) such as a drone taxi is one of the future transportations that have recently been attracting attention. Along with the construction of an urban terminal, an accurate landing system for UAM is also essential. However, in urban environments, reliable Global Navigation Satellite Systems (GNSS) signals cannot be received due to obstacles such as high-rise buildings which causes multipath and non-line of sight signal. Thus, the positioning result in urban environments from the GNSS signal is unreliable. Consequently, we propose the Ultra-Wideband (UWB) network to assist the soft landing of UAM on a vertiport. Since the positioning performance of UWB network depends on the layout of UWB anchors, it is necessary to optimize the layout of UWB anchors. In this paper, we propose a two-steps genetic algorithm that consists of binary genetic algorithm involved multi objectives fitness function and integer genetic algorithm involved robust solution searching fitness function in order to optimize taking into account Fresnel hole effects.

Application of storm water management model to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan

  • Liu, Jian;Liu, Yan;Liu, Ru;Li, Sixin;Wu, Lingyi
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.346-352
    • /
    • 2017
  • This study discusses application of the storm water management model (SWMM) to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan in October 2019. The SWMM was used to simulate the runoff processes and reduction efficiencies of the sponge city facilities. The runoffs of the sponge city facilities were compared with those of traditional drainage system for the design rainfall of 35.2mm and the rainfalls with different recurrence periods. The results show that the hign density sponge city facilities could meet the requirements for 80% of annual runoff control rate, SWMM can determine the scales of the sponge city facilities and effectively simulate the hydrological processes for different layout schemes. The simulation model is also helpful to making optimization of the sponge city facility layout.

  • PDF

조립성을 고려한 위상 최적설계법 개발 (Structural Layout Optimization Strategy Considering Assemblage)

  • 최국진;김명진;김윤영;장강원
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.512-519
    • /
    • 2006
  • In the ground-structure-based topology optimization, beam elements are regarded to be rigidly connected to each other, and joints are assumed to have infinite stiffness. Thus the optimized topology of a structure is obtained according to the assumption of no joint effect, and the resulting structure should be manufactured in one piece if the joint effect is to be excluded as much as possible. The underlying problems are that 1) the performance of the structure might be seriously decreased if the members of the structure are connected through welding or bolting, not manufactured in one piece, and 2) the topology of the structure will be changed if the joint effect is taken into account. In the paper, the assemblage issue is considered on topology optimization, and a new formulation based on the joint stiffness-varied ground beam structure is developed. Joints of a beam structure are modeled by elastic spring elements whose stiffnesses are controlled by design variables during the optimization.

등가자화전류를 이용한 최적코일형상 설계방법 (Optimal Coil Configuration Design Methodology Using the Concept of Equivalent Magnetizing Current)

  • 김우철;김민태;김윤영
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.43-49
    • /
    • 2007
  • A new electric coil design methodology using the notion of topology optimization is developed. The specific design problem in consideration is to find optimal coil configuration that maximizes the Lorentz force under given magnetic field. Topology optimization is usually formulated using the finite element method, but the novel feature of this method is that no such partial differential equation solver is employed during the whole optimization process. The proposed methodology allows the determination of not only coil shape but also the number of coil turns which is not possible to determine by any existing topology optimization concept and to perform single coil strand identification algorithm. The specific applications are made in the design of two-dimensional fine-pattern focusing coils of an optical pickup actuator. In this method, the concept of equivalent magnetizing current is utilized to calculate the Lorentz force, and the optimal coil configuration is obtained without any initial layout. The method is capable of generating the location and shape of turns of coil. To confirm the effectiveness of the proposed method in optical pickup applications, design problems involving multipolar permanent magnets are considered.

고유진동수를 고려한 박판 구조물의 보강재 최적설계 (Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency)

  • 임오강;정승환;최은호;김대우
    • 한국전산구조공학회논문집
    • /
    • 제19권2호
    • /
    • pp.195-202
    • /
    • 2006
  • 박판 구조물은 자동차를 비롯하여 항공기, 인공위성, 선박 등의 운송 수단과 건축물의 돔과 같이 효율적으로 활용되어지고 있으며 동시에 경량화를 필요로 하는 경우 널리 사용되는 구조물이다. 엔진, 변속기 등의 회전체의 부품을 보호하는 박판 구조물인 자동차 후드에서의 새로운 보강재 형상을 제시하였다. 자동차 후드는 엔진 룸에 장착되어 있는 회전체의 진동 영향을 민감하게 받아 공진현상이 발생할 우려가 있다. 따라서 설계하중을 지지할 강성을 가지며 동적 특성이 고려되어야 한다. 즉, 강성을 유지하면서 공진에 의한 진동도 고려해야 한다. 이는 곧 승차감과 직결된 중요한 문제이다. 그러므로 최적의 강성증대 설계결과를 얻기 위해서는 정적 동적 강성평가와 함께 고유진동수를 고려한 보강재의 최적설계가 도입되어야 한다. 본 연구에서는 고유진동수를 고려한 대표적인 박판 구조물인 자동차 후드의 보강재 위상을 구하고, 도출된 위상에서 보강재의 형상 최적 설계 후 제시된 보강재 단면의 최적 치수를 다구찌 방법을 이용한 직교 배열표상에서의 각 설계변수의 수준과 최적의 설계변수의 조건으로 구하였다.

수리모형을 이용한 선박 항해기기 패널의 인간공학적 배치 (The Ergonomic Layout of Ship's Bridge Panels using the Mathematical Programming)

  • 장준혁;김홍태;심정훈;이동춘
    • 대한인간공학회지
    • /
    • 제30권1호
    • /
    • pp.251-257
    • /
    • 2011
  • When designing a ship, ergonomic considerations are crucial when minimizing a navigator's fatigue due to the burden of work, and to appropriately operate the navigational equipment for each given situation by helping the operator to understand the surroundings as well as the physical functions of the ship. However, insufficient consideration of ergonomic elements in the actual design of ship Bridges is lowering the performance of safe navigation and allows for the possibility of operation or readout errors. Consequently, these errors lead to an increase in maritime accidents. Therefore, this study conducted a usability evaluation on the importance of and the usage frequency of navigational equipment, their influence on actual navigation, and the possibility of error upon operation or readout between training ship officers, to derive an optimized layout that includes the consideration of ergonomic factors for on-Bridge navigational equipment, which are currently arranged differently according to their type or size. The optimized layout of on-Bridge navigational equipment was carried out based on the evaluation results, using the Lingo program. Through the process of optimization, revised layouts of on-Bridge navigational equipments(control and display device) were suggested, considering emergency situations(ship collision, stranding, fire and explosion, sinking, etc.) during navigation.

Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization

  • Lee, Dong-Kyu;Kim, Jin-Ho;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.711-724
    • /
    • 2012
  • The goal of this study is to conceptually orientate optimized layouts of outrigger belt trusses which are in widespread use today in the design of tall buildings by strut-and-tie truss models utilizing a topology optimization method. In this study unknown strut-and-tie models are realized by using a typical SIMP method of topology optimization methods. In tradition strut-and-tie model designs find the appropriate strut-and-tie trusses along force paths with respect to elastic stress distribution, and then engineers or designers determine the most proper truss models by experience and intuition. It is linked to a trial-and-error procedure based on heuristic strategies. The presented strut-and tie model design by using SIMP provides that belt truss models are automatically and robustly produced by optimal layout information of struts-and-ties conforming to force paths without any trial-and-error. Numerical applications are studied to verify that outrigger belt trusses for tall buildings are optimally chosen by the proposed method for both static and dynamic responses.

The SIMP-SRV Method for Stiffness Topology Optimization of Continuum Structures

  • Zhou, Xiangyang;Chen, Liping;Huang, Zhengdong
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.41-49
    • /
    • 2007
  • In density-based topology optimization, 0/1 solutions are sought. Discrete topological problems are often relaxed with continuous design variables so that they can be solved using continuous mathematical programming. Although the relaxed methods are practical, grey areas appear in the optimum topologies. SIMP (Solid Isotropic Microstructures with Penalization) employs penalty schemes to suppress the intermediate densities. SRV (the Sum of the Reciprocal Variables) drives the solution to a 0/1 layout with the SRV constraint. However, both methods cannot effectively remove all the grey areas. SRV has some numerical aspects. In this work, a new scheme SIMP-SRV is proposed by combining SIMP and SRV approaches, where SIMP is employed to generate an intermediate solution to initialize the design variables and SRV is then adopted to produce the final design. The new method turned out to be very effective in conjunction with the method of moving asymptotes (MMA) when using for the stiffness topology optimization of continuum structures for minimum compliance. The numerical examples show that the hybrid technique can effectively remove all grey areas and generate stiffer optimal designs characterized with a sharper boundary in contrast to SIMP and SRV.

후류 영향 최적화 기반 실시간 풍력발전단지 발전 제어용 EMS의 설계 및 구현 (Design and Implementation of EMS for Real-Time Power Generation Control of Wind Farm Based on Wake Effect Optimization)

  • 김준형;성기원;정성환
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1097-1108
    • /
    • 2022
  • This paper aimed to design and implement an EMS for real-time power generation control based on wake effect optimization of wind farm, and then to test it in commercial operating wind farm. For real-time control, we proposed the wake band-based optimization and setting the wake effect distance limit, and when the wake effect distance limit was set to 7D in the actual wind farm layout, the calculation time was improved by about 93.94%. In addition, we designed and implemented the script-based EMS for flexible operation logic management in preparation for unexpected issues during testing, and it was installed and tested on a wind farm in commercial operation. However, three issues arose during the testing process. These are the communication interface problem of meteorological tower, the problem of an abnormal wake effect, and the problem of wind turbine yaw control. These issues were solved by modifying the operation logic using EMS's script editor, and the test was successfully completed in the wind farm in commercial operation.

A new algorithm for design of support structures in additive manufacturing by using topology optimization

  • Haleh Sadat Kazemi;Seyed Mehdi Tavakkoli
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.93-107
    • /
    • 2023
  • In this paper, a density based topology optimization is proposed for generating of supports required in additive manufacturing to maintain the overhanging regions of main structures during layer by layer fabrication process. For this purpose, isogeometric analysis method is employed to model geometry and structural analysis of main and support structures. In order to model the problem two cases are investigated. In the first case, design domain of supports can easily be separated from the main structure by using distinct isogeometric patches. The second case happens when the main structure itself is optimized by using topology optimization and the supports should be designed in the voids of optimum layout. In this case, in order to avoid boundary identification and re-meshing process for separating design domain of supports from main structure, a parameterization technique is proposed to identify the design domain of supports. To achieve this, two density functions are defined over the entire domain to describe the main structure and supporting areas. On the other hand, since supports are under gravity loads while main structure and its stiffness is not completed during manufacturing process, in the proposed method, stiffness of the main structure is considered to be trivial and the gravity loads are also naturally applied to design support structures. By doing so, the results show reasonable supports are created to protect, continuously, overhanging surfaces of the main structure. Several examples are presented to demonstrate the efficiency of the proposed method and compare the results with literature.