• Title/Summary/Keyword: lava flows

Search Result 36, Processing Time 0.024 seconds

Study on Source of Lava Flows Forming the Manjanggul Lava Tube (만장굴 용암동굴을 형성한 용암의 공급지에 관한 연구)

  • Ahn, Ung-San;Hwang, Sang-Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.237-253
    • /
    • 2009
  • The lava flows forming the Manjanggul lava tube are commonly said to have a potential source from the Geomunoreum scoria cone. We inferred the source of lava flows with the Manjanggul lava tube, based on many studies about lava tubes within lava flows of active volcano in the world. We made a lava flow field map from lithofacies, features and latitude of lava surfaces in the northeastern part of Jeju Island, and then examined closely the distribution and mutual relation of lava tubes in each lava flow field. As result, the Geomunoreum lava tube system is divided into a series of master tubes(Utsanjeungul, Bukoreumgul, Daerimdonggul, Manjanggul, Gimnyeonggul, Yongcheondonggul and Dangcheomuldonggul lava tube), a complicated networks of small tubes(Bengdwigul lava tube), and a series of unitary tubes(Gimyeongbilemotgul~Gaeusaemgul lava tube) in Geomunoreum lava flows. Particularly a canyon, 2km in length to NNE direction from the Geomunoreum scoria cone, is interpreted to be collapse trench of lava tube roof that belongs to an upflow part of the master tube in the Geomunoreum lava tube system, according to the location and direction. Accordingly, the source of lava flows, forming the Manjanggul lava tube, is the Geomunoreum scoria cone.

Implementation of Lava Flow Simulation Program Using Cellular Automata (Cellular Automata를 이용한 용암류 모의 프로그램의 구현)

  • Lee, Chung-Hwan;Hong Lee, Dong-jin;Cha, Eui-young;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.93-98
    • /
    • 2017
  • In this paper, we propose a lava flow simulation program to predict the range of lava flows area and thickness of lava flows during volcanic eruptions. The map information is represented as a 'cell' with observed values per fixed area such as DEM and a lava flow prediction algorithm using a cellular automata model is performed to predict the flow of lava flows. To obtain quantitative data of lava flows, fluid properties of lava flows are defined as Bingham plastic fluid and derived equation is applied to the rules of cellular automata. To verify the program, we use a 30m resolution DEM provided by USGS. We compared simulation results with real lava flows for the Pu'u'O'o crater area in Hawaii, which has erupted since May 24, 2016.

Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits

  • Hong, Ik-Seon;Yi, Yu;Kim, Eojin
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.131-140
    • /
    • 2014
  • Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.

Volcanic Caves in Jeju (제주도의 화산동굴)

  • Choi, Ji-Seok
    • Journal of the Speleological Society of Korea
    • /
    • no.84
    • /
    • pp.43-45
    • /
    • 2008
  • Jeju Island is formed by lava flow streams with the Mt. Halla in the center. The Mt. Halla‘s crater or other parasitic volcano produced lava flows creating lava plateau in this area. There are one thousand volcano caves in the world, and 50% of them are located in the west coast of United States. There are 186 volcano caves in Italy, 100 in Mt. Fuji, Japan, and 70 in Jeju Island. Jeju Island‘s east-west axis four sides are world-renown volcano zones with basalt strata that feature low viscosity and fluidity.

Possible Causes of Paleosecular Variation and Deflection of Geomagnetic Directions Recorded by Lava Flows on the Island of Hawaii

  • Czango Baag
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.20-20
    • /
    • 2003
  • In the summers of 1997 and 1998 and in February of 2000 we made 570 measurements of the ambient geomagnetic field 120 cm above the pavement surface of State Route 130, south of Pahoa, the island of Hawaii using a three-component fluxgate magnetometer. We measured at every 15.2 m (50 feet) interval covering a distance of 6, 310 m (20, 704 ft) where both historic and pre-historic highly magnetic basalt flows underlie. We also collected 197 core samples from eight road cuts, 489 specimens of which were subject to AF demagnetizations at 5 - 10 mT level up to a maximum field of 60 mT. We observed significant inclination anomalies ranging from a minimum of $31^{\circ}$ to a maximum $40^{\circ}$ where a uniform inclination value of $36.7^{\circ}$ (International Geomagnetic Reference Field, IGRF) was expected. Since the mean of the observed inclinations is approximately $35^{\circ}$ we assume that the study area is slightly affected by the magnetic terrain effect to a systematically shallower inclinations for being located in the regionally sloping surface of the southern side of the island (Baag, et al., 1995). We observed inclination anomalies showing wider (spacial) wavelength (160 - 600 m) and higher amplitudes in the historic lava flows area than in the northern pre-historic flows. Our observations imply that preexisting inclination anomalies such as those that we observed would have been interpreted as paleosecular variation (PSV). These inclination anomalies can best be attributed to concealed underground highly magnetic dikes, channel type lava flows, on-and-off hydrothermal activities through fissure-like openings, etc. Both the within- and between-site dispersions of natural remanent magnetization (NRM) are largest (up to ${\pm}7^{\circ}$) above the flows of 1955, while the area of pre-historic flows in the northern part of the study area exhibit the smallest dispersion. Nevertheless, mean inclinations of each historic flow of 1955 and 1790 are almost identical to that of the corresponding present field, whereas mean of NRM (after AF demagnetization) inclinations for each of the four pre-historic lava flow units is twelve to thirteen degrees lower than the present field inclination. We observed three cases of very large inclination variations from within a single flow, the best fitting curves of which are linear, second and third order polynomials each from within a single flow, whereas no present field variations are observed. This phenomena can be attributed to the notion that local magnetic anomalies on the surface of an active volcano are not permanent, but are transient. Therefore we believe that local magnetic anomalies of an active volcano may be constantly modified due to on going subsurface injections and circulations of hot material and also due to wide spacial and temporal distribution of highly magnetic basaltic flows that will constantly modify the topography which will in turn modify the local ambient geomagnetic field (Baag, et al., 1995). Our observations bring into question the general reliability of PSV data inferred from volcanic rocks, because on-going various geologic and geophysical activities associated with active volcano would continuously deflect and modify the ambient geomagnetic field.

  • PDF

Petrological Characteristics of the Daejeonsa Basalt in the Mt. Juwang area, Cheongsong-gun, Gyeongsang but-do, Korea (경북 청송군 주왕산지역의 대전사 현무암의 암석학적 특성)

  • Koh, Jeong-Seon;Ahn, Ji-Young;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.553-562
    • /
    • 2000
  • Daejeonsa basalt in the Mt. Juwang area is composed of 12 lava flows alternate with 9 peperites, and each lava and peperite has variable thickness. Globular peperites yielded in Daejeonsa basalt are mixed basalt clasts with reddish shale. Based on field description, when lava flows over unconsolidated wet shale or injectes into unconsolidated wet shale, peperites were formed at the contacts between lava and shale. Daejeonsa basalt are massive lava flows with rare vesicules: some vesicules are found in upper part of a flow unit. The basalt has mainly pseudomorphs of olivine as phenocryst, and also plagioclase and clinopyroxene phenocrysts in rocks with higher Mg-number. Matrix is mainly subophitic texture, sometimes showing ophitic and intergranular textures due to different cooling rate. Clinopyroxene is augite(Wo$_{41.6}$En$_{45.1}$Fs$_{13.3}$), and plagioclase is mostly labradorite(An$_{55.0}{\sim}_{67.7}$), but some is andesine(An$_{44.3}$) and bytownite(An$_{74.5}$). Oxide minerals are composed of titanomagnetite and ilmenite.

  • PDF

Construction of the image database of Earth's lava caves useful in identifying the lunar caves

  • Hong, Ik-Seon;Jeong, Jongil;Sohn, Jongdae;Oh, Suyeon;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.138.2-138.2
    • /
    • 2012
  • Cave on the Moon is considered as the most appropriate place for human to live during the frontier lunar exploration. While the lava flows, the outer crust gets cooled and solidified. Then, the empty space is remained inside after lava flow stops. Such empty space is called the lava caves. Those lava tubes on the Earth are formed mostly by volcanic activity. However, the lava tubes on satellite like Moon and planet like Mars without volcanic activity are mostly formed by the lava flow inside of the crater made by large meteorite impact. Some part of lava tube with collapsed ceiling appears as the entrance of the cave. Such area looks like a deep crater so called a pit crater. Four large pit craters with diameter of > 60 m and depth of > 40 m are found without difficulty from Kaguya and LRO mission image archives. However, those are too deep to use as easily accessible human frontier base. Therefore, now we are going to identify some smaller lunar caves with accessible entrances using LRO camera images of 0.5 m/pixel resolution. Earth's lava caves and their entrances are well photographed by surface and aerial camera in immense volume. Thus, if the image data are sorted and archived well, those images can be used in comparison with the less distinct lunar cave and entrance images due to its smaller size. Then, we can identify the regions on the Moon where there exist caves with accessible entrances. The database will be also useful in modeling geomorphology for lunar and Martian caves for future artificial intelligence investigation of the caves in any size.

  • PDF

INVESTIGATION OF BAIKDU-SAN VOLCANO WITH SPACE-BORNE SAR SYSTEM

  • Kim, Duk-Jin;Feng, Lanying;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.148-153
    • /
    • 1999
  • Baikdu-san was a very active volcano during the Cenozoic era and is believed to be formed in late Cenozoic era. Recently it was also reported that there was a major eruption in or around 1002 A.D. and there are evidences which indicate that it is still an active volcano and a potential volcanic hazard. Remote sensing techniques have been widely used to monitor various natural hazards, including volcanic hazards. However, during an active volcanic eruption, volcanic ash can basically cover the sky and often blocks the solar radiation preventing any use of optical sensors. Synthetic aperture radar(SAR) is an ideal tool to monitor the volcanic activities and lava flows, because the wavelength of the microwave signal is considerably longer that the average volcanic ash particle size. In this study we have utilized several sets of SAR data to evaluate the utility of the space-borne SAR system. The data sets include JERS-1(L-band) SAR, and RADARSAT(C-band) data which included both standard mode and the ScanSAR mode data sets. We also utilized several sets of auxiliary data such as local geological maps and JERS-1 OPS data. The routine preprocessing and image processing steps were applied to these data sets before any attempts of classifying and mapping surface geological features. Although we computed sigma nought ($\sigma$$^{0}$) values far the standard mode RADARSAT data, the utility of sigma nought image was minimal in this study. Application of various types of classification algorithms to identify and map several stages of volcanic flows was not very successful. Although this research is still in progress, the following preliminary conclusions could be made: (1) sigma nought (RADARSAT standard mode data) and DN (JERS-1 SAR and RADARSAT ScanSAR data) have limited usefulness for distinguishing early basalt lava flows from late trachyte flows or later trachyte flows from the old basement granitic rocks around Baikdu-san volcano, (2) surface geological structure features such as several faults and volcanic lava flow channels can easily be identified and mapped, and (3) routine application of unsupervised classification methods cannot be used for mapping any types of surface lava flow patterns.

  • PDF

SPELEOLOGICAL POTENTIAL OF KAMCHATKA OBLAST

  • Ha, William R.lliday
    • Journal of the speleological society of Korea
    • /
    • no.5
    • /
    • pp.53-55
    • /
    • 1997
  • In September 1996 I spent 8 days in Kamchatka Oblast of Silberia, speaking at the institute of Volcanic Geology and Geochemistry in Petropavlovsk and participating ina field excursion to the 1740 and 1975 lava beds of Tolbachik volcano. By international standards, the caves of these flows are small. But recently it has appeared that variations in chemistry and gas content of pahoehoe basalts makes profound variations in their lava tube caves. Thus it is important to look at as many speleoliferous regions as possible. This trend continued at Tolbachik.(omitted)

  • PDF

Geology of the Hawaii Island and Volcanic Activities of Mauna Loa and Kilauea (하와이 섬의 지질과 마우나로아 및 킬라우에아의 화산활동)

  • 황상구;이문원;원종관;우경식;이광춘
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.184-195
    • /
    • 2003
  • Hawaii Island makes up of five volcanos of Kohala, Mauna Kea, Hualalai, Mauna Loa, and Kilauea. They are big shield volcanoes rising above the Pacific ocean floor and final two volcanoes provide a natural laboratory for the study of active volcanoes. Mauna Loa is the largest single volcano on earth. At the submmit is an oval-shaped Mokuaweoweo caldera, from which two rift zones extend to the southwest and northeast, and in the medial part are the longest lava tube systems in the world. Kilauea has been formed largely by eruption along southwest and eastern rift zones extending from Kilauea caldera at the submmit. On the eastern rift zone, spectacularly, the 1989-1974 eruption of Kilauea at Mauna Ulu crater formed the Mauna Ulu lava flow field. The 1983-1986 eruption of aa flows at Puu Oo crater, and the activities of pahoehoe flows during 1986-1990 at Kupaianaha crater and during 1991-recent at the Puu Oo has produced the Puu Oo and Kupaianaha lava flow field.