• Title/Summary/Keyword: launch Window

Search Result 15, Processing Time 0.024 seconds

EARTH TO MARS BALLISTIC MISSION OPPORTUNITIES FROM NARO SPACE CENTER (나로 우주센터에서 화성 탐사선 발사를 위한 최적 시간대 결정)

  • 유성문;송영주;박은서;박상영;최규홍;윤재철;임조령;김방엽;김한돌
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.299-312
    • /
    • 2003
  • Earth to Mars ballistic mission opportunities from Naro Space Center are studied. Determining ballistic mission opportunities can be divided into two major parts, i.e. the launch window and the daily launch window determination. At the launch window determination parts, Porkchop diagrams of Earth launch C3 magnitude, total mission duration, declination of $V_{\infty}$ vector at the Earth launch, and declination & right ascension of $V_{\infty}$ vector at the Mars arrival are examined. The location of launch site and rotation effects of the Earth are considered during the daily launch window determination parts. Using Lambert method, various Porkchop diagrams of launching in 2027 are examined for example. The daily launch window of Naro Space Center at that year was checked to verify the launch possibility by comparing with the Kennedy Space Center.

SATELLITE'S LAUNCH WINDOW CALCULATION BY ASTRODYNAMICAL METHODS (천체역학적 방법을 이용한 인공위성의 최적발시간대)

  • 우병삼;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.308-319
    • /
    • 1994
  • We can launch satellites only at a certain time which satisfies special conditions, since the current techniques cannot overcome these constraints. Launch window constraints are the eclipse duration, solar aspect angle, attitude control, launch site and the launch vehicle constraints, etc. In this paper, launch window is calculated that satisfies all these constraints. In calculating launch window, the basic concepts are relative locations of the sun-satellite-earth system and relative velocities of these, and these requires geometric consideration for each satellite. Launch window calculation was applied to Kitsat 2(low earth orbit) and Koreasat(geostationary orbit). The result is shown in the form of a graph that has dates on the X-axis and the corresponding times of the given day on the Y-axis.

  • PDF

PRELIMINARY TRANSFER ORBIT MISSION ANALYSIS OF COMS

  • Kim, Bang-Yeop;Gicquel, Anne-Helene;Brichler, Geoffroy
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.336-339
    • /
    • 2006
  • In this paper, the preliminary transfer orbit analysis results for the COMS mission were presented. As the first step of transfer orbit analysis, the preliminary analyses of LAE burn strategy, geometrical visibility, and launch window were performed. For the analysis process, all launcher nominates were divided into three groups according to the declination of LAE thrust angle. So, the three launch cases were assigned as the representative launcher of each group, respectively. They are Ariane-5, Atlas summer and winter launch cases. And all analyses were performed at the representative launcher of each group. One nominal and three back-up plans were considered for the establishment of LAE burn strategy. And for geometrical visibility analysis, four TT&C ground stations were considered. Finally, the preliminary launch window analysis was performed about the duration of one year from the first day of September 2008. The analysis results show that the all launch cases comply with the transfer orbit operation requirements.

  • PDF

Dispersion Managed Optical Transmission Links with Optimized Optical Phase Conjugator

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.372-376
    • /
    • 2009
  • In this paper, new and simple optical transmission link with fixed dispersion management (DM) scheme, i.e., pre(post) compensation and residual dispersion per span (RDPS) are fixed to net residual dispersion (NRD) = 0 ps/nm, and optical phase conjugator (OPC) having optimal position depending on launch power in WDM transmission system is proposed. Also, effective launch power range of WDM channels resulting 1 dB eye opening penalty (EOP) is induced as a function of OPC position. First, it is confirmed that, for applying DM into WDM transmission link fixed pre(post)compensation and RDPS, which are independence on exact system parameters except launch power, sufficiently are used in WDM links, but OPC with optimal position is needed for effective compensating impairments of WDM channels. And, it is confirmed that effective launch power is broader in case of RDPS = 100 ps/nm than in RDPS = 50 ps/nm. But, it is shown that the best OPC position offset is -0.6 km from a point of view of power window, which is defined as difference between maximum and minimum effective launch power.

Earliest Intercept Geometry Guidance to Improve Mid-Course Guidance in Area Air-Defence

  • Shin, Hyo-Sang;Tahk, Min-Jea;Tsourdos, A.;White, B.A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.118-125
    • /
    • 2010
  • This paper describes a mid-course guidance strategy based on the earliest intercept geometry (EIG) guidance. An analytical solution and performance validation will be addressed for generalized mid-course guidance problems in area air-defence in order to improve reachability and performance. The EIG is generated for a wide range of possible manoeuvres of the challenging missile based on the guidance algorithm using differential geometry concepts. The main idea is that a mid-course guidance law can defend the area as long as it assures that the depending area and objects are always within the defended area defined by EIG. The velocity of Intercept Point in EIG is analytically derived to control the Intercept Geometry and the defended area. The proposed method can be applied in deciding a missile launch window and launch point for the launch phase.

LIGO-India: Beyond discovery of Gravitational waves.

  • Souradeep, Tarun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.27.2-27.2
    • /
    • 2017
  • The historic discovery of gravitational waves through direct detection by the LIGO observatories in the USA, in principle, opens up a new window for astronomy. In practice, however, the true launch of gravitational-wave astronomy will await the global array of LIGO like observatories including the planned LIGO-India observatory recently flagged off by the Union cabinet of India. I will review the momentous discovery, the potential of gravitational-wave astronomy and the promise of LIGO-India.

  • PDF

Design and Analysis of Korean Lunar Orbiter Mission using Direct Transfer Trajectory (직접 전이궤적을 이용한 한국형 달 궤도선 임무설계 및 분석)

  • Choi, Su-Jin;Song, Young-Joo;Bae, Jonghee;Kim, Eunhyeuk;Ju, Gwanghyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.950-958
    • /
    • 2013
  • The Lunar orbiter is expected to be inserted into a ~300km low Earth orbit using Korea Space Launch Vehicle-II(KSLV-II). After the states are successfully determined with obtained tracking data, the Trans Lunar Injection(TLI) burn has to be done at appropriate epoch to send the lunar orbiter to the Moon. In this study, we describe in detail the mission scenario of the Korean lunar orbiter from the launch at NARO Space Center to lunar orbit insertion(LOI) stage following direct transfer trajectory. We investigate the launch window including launch azimuth, delta-V profile according to TLI and LOI burn positions. We also depict the visibility conditions of ground stations and solar eclipse duration to understand the characteristics of the direct transfer trajectory. This paper can be also helpful not only for overall understanding of ${\Delta}V$ trend by changing TOF and coasting time but for selecting launch epoch and control parameters to decrease fuel consumption.

OPTIMUM AKN BURN PLANNING FOR ORBITAL TRANSFER OF KOREASAT (무궁화 위성의 궤도전이를 위한 최적 원지점 점화 계획)

  • 송우영;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.296-307
    • /
    • 1994
  • Using X-Window system (Motif Graphic User Interface), the AKM (Apogee Kick Motor) firing software for Koreasat which will be launched in 1995 has been developed to transfer the spacecraft from its transfer orbit, provided by the DeltaII launch vehicle, into a nearly geostationary drift orbit. The AKM firing software runs in one of two modes. In mission analysis mode, using a fixed magnitude impulsive velocity change, it provides the necessary data for planning the burn parameters. In insert mode, it uses the orbit propagator function to integrate the spacecraft state through the AKM burn. In this case, an AKM thrust profile and specific impulse are applied to the necessary data for planning the burn parameters to obtain the best possible drift orbit. The apogee burn planning simulation for orbital transfer of Koreasat has been performed using the AKM firing software. And the result of this simulation has been analyzed.

  • PDF

Geostationary Transfer Orbit Mission Analysis Software Development

  • Kim, Bang-Yeop
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.26.1-26.1
    • /
    • 2008
  • The Korean first geostationary meteorological satellite, COMS, will be launched during second half of 2009. For the next meteorological geostationary satellite mission, KARI is now preparing the development process and tools. As one of the endeavor, a software tool is being developed for the analysis and design of geostationary transfer orbit. Generally, these kind of tools should be able to do various analysis works like apogee burn planning, dispersion analysis, ground visibility analysis, and launch window analysis etc. In this presentation, a brief introduction about a design process and analysis software tool development. And simulated calculation results are provided for the geostationary transfer orbit. These software can be used for the next geostationary satellite mission design and development.

  • PDF

The Double Asteroid Redirection Test: NASA's First Planetary Defense Test Mission

  • Rivkin, Andrew S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.35.4-35.4
    • /
    • 2021
  • The Double Asteroid Redirection Test (DART) is NASA's first planetary defense test mission, designed to test the kinetic deflector technique by crashing into an asteroid and changing its orbit. DART's launch window opens in November, 2021, with arrival at its target less than a year later in late September or early October 2022. The target of the DART spacecraft is the moonlet Dimorphos, a 150-m moonlet orbiting the 780-m asteroid Dimorphos. By changing the orbit of Dimorphos around Didymos, the results can be detected much more easily than changing the orbit of an asteroid around the Sun. I will discuss what we know about Didymos and Dimorphos, the plans for the DART mission, the expected results, and how DART is important for planetary defense in general.

  • PDF