• 제목/요약/키워드: lattice structures

검색결과 365건 처리시간 0.026초

Design of the Spur Gear with Honeycomb Lattice Structure and PBF Printing

  • Chul-Kyu Jin
    • 한국산업융합학회 논문집
    • /
    • 제26권4_1호
    • /
    • pp.529-536
    • /
    • 2023
  • In this study, the spur gear with honeycomb lattice structures are designed. The pitch diameter and body length of the spur gear are Ø93 mm and 104.0 mm, respectively. The designed gear was printed using Powder bed fusion (PBF) 3D printer. The gear is 3D printed perfectly. Even the teeth and honeycombs of the gear were output in the same way as the design shape. The printed gear with honeycomb lattice structure has a 24% smaller cross-sectional area and 29% smaller volume and weight than conventional solid structure gears. The surface roughness is approximately 4.5㎛, and the hardness is 345 HV.

육각 격자구조를 갖는 콘형 복합재 격자구조체의 구조안전성 평가 기법 연구 (Study on Evaluation Method of Structural Integrity for Cone-Type Composite Lattice Structures with Hexagonal Cell)

  • 임재문;강승구;신광복;이상우
    • Composites Research
    • /
    • 제31권4호
    • /
    • pp.156-160
    • /
    • 2018
  • 본 논문에서는 콘형 복합재 격자구조체의 구조안전성 평가 기법에 대해 연구를 수행하였다. 콘형 복합재격자구조체의 구조안전성 평가는 유한요소해석을 통해 수행되었다. 구조안전성 평가를 위한 유한요소모델은 솔리드 요소를 사용하여 생성하였다. 섬유 교차부와 비교차부의 물성 차이를 고려하기 위해 섬유 체적률을 고려한 기계적 물성을 적용하였다. 구조해석 기법의 검증을 위해 콘형 복합재 격자구조체의 압축 시험을 수행하였다. 시험과 해석의 비교 결과, 약 2%의 변위 오차가 발생하여 잘 일치하는 것을 확인하였다.

섬유체적비 불균일 및 수지응집층이 복합재 격자 구조체 리브의 강성도 거동에 미치는 영향 (The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures)

  • 강민송;전민혁;김인걸;김문국;고은수;이상우
    • Composites Research
    • /
    • 제31권4호
    • /
    • pp.161-170
    • /
    • 2018
  • 원통형 복합재 격자 구조체는 필라멘트 와인딩 기법으로 제작되며 제작 공정에서 발생할 수 있는 섬유체적비 불균일과 수지응집층은 구조체의 강성도 및 강도에 영향을 줄 수 있다. 구조체의 주요 요소인 후프 및 헬리컬 리브의 단면 분석을 통해 섬유체적비 불균일 및 수지응집층의 존재 여부를 확인하였으며, 단면 분석 결과를 바탕으로 후프 및 헬리컬 리브에 대한 실험 및 이론적 접근을 통해 섬유체적비 불균일 및 수지응집층이 리브 요소의 강성도에 미치는 영향을 분석하였다. 섬유체적비 불균일이 후프 리브의 굽힘 거동에 영향을 미치는 것을 확인하였으며 헬리컬 리브의 경우 섬유체적비 불균일 및 수지응집층에 의해 강성도에 변화가 있음을 확인하였다.

XRD와 TEM을 이용한 알바이트의 구조 및 상전이 연구 (XRD and TEM Investigations of Structures and Phase Transformations in Albite)

  • 김윤중;이영부
    • 한국광물학회지
    • /
    • 제16권1호
    • /
    • pp.91-106
    • /
    • 2003
  • Na-장석(Amelia albite)의 등온가열 실험에 대한 XRD 분석 결과는 $1073^{\circ}C$의 가열 시료에서 격자상수의 급격한 변화를 보여주는데, 이는 Al과 Si의 비배열(disordering)과 가열된 시료의 급랭에 의한 격자 변형 때문이라고 본다. $1073^{\circ}C$에서는 약 7일 간의 가열에 의해 저온 알바이트에서 고온 알바이트로 상전이한 반면, $924^{\circ}C$에서는 Al-Si의 비배열 속도가 느려서 140일 동안 가열된 시료도 초기 단계의 중간단계 알바이트 상태로 남아 있었다. TEM 분석 결과는 가열된 시료에서 100∼200$\AA$ 크기의 트위드(tweed) 구조가 형성됨이 특징적인데, 이 구조의 발달 및 변화는 고온($1073^{\circ}C$)과 저온 ($923^{\circ}C$)의 가열 시료가 다름이 드러났다. 즉, 전자는 국부적으로 알바이트 쌍정과 유사한 미세구조로 전이한데 반해, 후자는 보다 넓은 지역에 걸쳐 알바이트 쌍정면이 우세한 도메인 구조로 전이하였다. 가열에 의한 Al과 Si의 비배열과 급랭에 의한 응력 때문에 격자의 불안정(lattice instability)이 증가하게 되는데 이를 완화시키기 위하여 태아 단계의 쌍정 구조(알바이트 쌍정과 pericline 쌍정)를 형성되는 것이 트위드 구조의 원인이라고 본다.

Impact of lattice versus solid structure of 3D-printed multiroot dental implants using Ti-6Al-4V: a preclinical pilot study

  • Lee, Jungwon;Li, Ling;Song, Hyun-Young;Son, Min-Jung;Lee, Yong-Moo;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • 제52권4호
    • /
    • pp.338-350
    • /
    • 2022
  • Purpose: Various studies have investigated 3-dimensional (3D)-printed implants using Ti6Al-4V powder; however, multi-root 3D-printed implants have not been fully investigated. The purpose of this study was to explore the stability of multirooted 3D-printed implants with lattice and solid structures. The secondary outcomes were comparisons between the 2 types of 3D-printed implants in micro-computed tomographic and histological analyses. Methods: Lattice- and solid-type 3D-printed implants for the left and right mandibular third premolars in beagle dogs were fabricated. Four implants in each group were placed immediately following tooth extraction. Implant stability measurement and periapical X-rays were performed every 2 weeks for 12 weeks. Peri-implant bone volume/tissue volume (BV/TV) and bone mineral density (BMD) were measured by micro-computed tomography. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were measured in histomorphometric analyses. Results: All 4 lattice-type 3D-printed implants survived. Three solid-type 3D-printed implants were removed before the planned sacrifice date due to implant mobility. A slight, gradual increase in implant stability values from implant surgery to 4 weeks after surgery was observed in the lattice-type 3D-printed implants. The marginal bone change of the surviving solid-type 3D-printed implant was approximately 5 mm, whereas the value was approximately 2 mm in the lattice-type 3D-printed implants. BV/TV and BMD in the lattice type 3D-printed implants were similar to those in the surviving solid-type implant. However, BIC and BAFO were lower in the surviving solid-type 3D-printed implant than in the lattice-type 3D-printed implants. Conclusions: Within the limits of this preclinical study, 3D-printed implants of double-rooted teeth showed high primary stability. However, 3D-printed implants with interlocking structures such as lattices might provide high secondary stability and successful osseointegration.

마이크로 격자트러스모델을 이용한 반복강성제어법에 의한 콘크리트 구조형태의 최적화 (Structural Layout Design for Concrete Structures Based on the Repeated Control Method by Using Micro Lattice Truss Model)

  • 최익창;유미일랑
    • 콘크리트학회논문집
    • /
    • 제20권6호
    • /
    • pp.705-712
    • /
    • 2008
  • 본 연구에서는 그라운드 구조법을 이용하여 콘크리트 구조형태의 최적화에 대한 수치 실험을 하였다. 마이크로 격자 모델은 단위 셀의 집합체로 구성되었다. 해석 과정은 각 부재의 응답계를 강성에 피드백 시켜서 유한요소해석을 반복하였다. 이 해석의 반복을 통하여, 트러스 모델은 수리적 최적화 수법이 아니라 국소적인 응력 상태를 이용하여 위상적인 구조 형태와 구조적 형상을 표현하였다. 격자 트러스 모델을 여러 예제에 적용하여 형상 배치 문제를 해석하는데 성공하였다.

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.